THE PRACTICAL DESIGN OF IRRIGATION WORKS

BY

W. G. BLIGH, M.INST.C.E.
EXECUTIVE ENGINEER INDIAN F. W. DEPARTMENT (RETIRED)

THIRD EDITION REVISED AND BROUGHT UP TO DATE

BY

F. W. WOODS, C.I.E.
CHIEF LINER IRIGATION WORKS PUNJAB INDIA 1895 1903

LONDON
CONSTABLE & COMPANY LIMITED
107-111 ORANGE STREET LONDON LEICESTER SQUARE W.C. 2
PREFACE TO THE THIRD EDITION

The second edition of this work was published in the year 1910 and as a good deal of water has flowed down the canals of the world since then—followed by proportionate advance in the science of irrigation engineering—the time is ripe for the revision of the work bringing it up to date in instructiveness and utility. It is profoundly regrettable that the late Mr W. G. Bligh did not find occasion to revise his own treatise in a third edition before his death.

In his Preface to the Second Edition Mr. Bligh wrote,

In this edition considerable emendations and additions have been made to the book, the principal of which is the treatment recorded to the theory of the stability of weirs or other works founded on a sand stratum. In the first edition this stability was made dependent on two considerations—first, the weight of the structure, and secondly, the enforced length of percolation. Exception was taken to this view by professional critics, weight as an agent effecting reduction of pressure or head being ruled out as unsound. The author now frankly admits that his previous view is untenable and Chapter VI has consequently been entirely recast: the first factor that of weight except as regards upward hydrostatic pressure having been eliminated from the equation of resistance.

Chapter VI thus recast by Bligh has become the principal feature of the book having been made the fundamental criterion of hydraulic design throughout the treatise. The theoretical considerations there set forth have been derived from the record of damages occurring in repairs effected to the weirs across the River Ganges at Narora and the River Chenab at Khanka on the supposition that the said damages were due to hydrostatic build-up pressures under the floor of the Narora Weir and to pressure or disruptive percolation flow through the subsoil under the Khanka Weir. The present editor thinks he has conclusively demonstrated in the notes at end of Chapter VI, that the damages to these Weirs described in the Preface were not ascribable to the above-mentioned causes but to...
by agnostic engineers, in their anxiety to guard their structures, in design, against possible "blow-up" or "piping," during the past quarter of a century. The Madras Canal works afford a good pointer, probably, in the direction of sounder, more economical, design.

As regards "Retaining Walls" (Chapter I) the editor suggests that the current conventional methods of design and theory are unsatisfactory, and that it is advisable to allow rationally, in calculations of earth-thrust, for the force of soil cohesion, whilst insisting on the rule of the "middle-third" as the only means of designing retaining walls correctly, quaque foundation soil pressures.

In conclusion, the editor desires to make it clear that Bligh’s treatise is, in his opinion, an admirable and useful work, all things considered, and a monument to the credit of the industry and acute judgment of its author. That does not mean that there is not a great deal in it which the editor is not in full agreement with—especially in Chapters V. and XIII—on which he would not have preferred to express opinions somewhat differently; but it has been considered desirable, as a general rule, not to interfere greatly with the text of the author, and, apart from matters of detail, here and there, to express dissent, if at all, only in editorial footnotes, or in notes appended to each Chapter.

London,
March 21st, 1927
PREFACE TO SECOND EDITION

In this edition considerable emendations and additions have been made to the book, the principal of which is the treatment accorded to the theory of the stability of weirs or other works founded on a sand stratum. In the first edition this stability was made dependent on two considerations—first the weight of the structure and, secondly, the enforced length of percolation. Exception was taken to this view by professional critics, weight as an agent effecting reduction of pressure or head being ruled out as unsound. The author now frankly admits that his previous view is untenable, and Chapter VI has consequently been entirely recast, the first factor, that of weight, except as regards upward hydrostatic pressure, having been eliminated from the equation of resistance.

The next main alteration effected is in Chapter V, where the tables of discharge of submerged weirs founded on theory have been replaced by others worked out from the formula introduced by Herschel an American hydraulician. These are based on experimental data which, though on the usual unsatisfactory small scale, still must be preferable to the use of coefficients obtained from any purely theoretical consideration. Chapter I remains as before. Chapters II and III have been recast and rewritten. Gravity dams and weirs are now united in Chapter II while the arched and panel deck varieties are dealt with in Chapter III, with many additional examples. Chapter IV is little altered. Chapters V and VI have already been referred to. The remaining chapters have had additional matter inserted and some excised, the most important alterations being in Chapter XII (olim XIII), which has been practically rewritten. The increase in the number of illustrations all through is considerable.

The work has been brought by this means thoroughly up to date. While its original characteristics, namely, critical examination of existing works, are retained, its scope has been enlarged and its value, it is hoped, as a medium of instruction thereby enhanced.

The author wishes to express his obligations to the following works
bearing on the same subject—"The Irrigation Works of India," R. Buckley,
C.I.E., London; "Reservoirs for Irrigation Water Power and Domestic
and Practice," Sir Hanbury Brown, K.C.M.G., London; "Irrigation
Engineering," H. M. Wilson, New York; "Indian Storage Reservoirs,
W. L. Strange, London; "Treatise on Hydraulics," M. Merriman, New

W. G. BLIGH.
CONTENTS

CHAPTER I

RETAINING WALLS

Pars 1—4 Graphical statement of theory of earth pressure Par 5 Influence of cohesion Pars 6—8 Values of angles of repose and friction Pars 9—13 Positions of Plane of Rupture graphically obtained Pars 14—19 Incidence of resultant on base of wall with terrain horizontal Pars 20, 21 Reciprocal triangle of earth pressure Par 22 Graphical procedure of drawing line of pressure through wall Pars 23—25 Incidence of resultant on base with terrain inclined and surcharged Par 26 Diagrams of walls of equal stability of varying face batters with Table I of base widths Par 27 Sloping crested wing walls Par 28 Economical advantage of free batter Pars 29—32 Brunel’s curved section graphically analysed Par 33 Pitched slopes—thickness determined graphically Par 34 Classification of retaining walls in irrigation works Pars 35—39 Examples of disposition and alignment on plan Par 40 Example of wingless fall Pars 41—44 Tied land wings Pars 45—47 Undersunk retaining walls, conditions investigated Pars 48—50 Examples of defective design of sections with revised profiles Par 51 Effect of earth pressure on both sides of wall Par 52 Sloping crested wings on plan, section and elevation Reinforced concrete walls pp 1—33

Editor’s Notes A, C

. . . pp. 33—35

CHAPTER II

SECTION I. GRAVITY DAMS

Par 1 Classification of dam types Par 2 Definition of dam and weir. Par 3 Area of water pressure Par 4 Principle of middle third Par 5 Elementary triangular profile base width Par 6 Pressures represented in tons per square foot Par 7 Distribution of stress on base Par 8 Unit stress on base due to inclined resultant Par 9 Position of centre of pressure on base in designs Par 10 Values of resultant pressures of induced maximum unit stresses in triangular profile and limiting height Par 11 Reduction of water pressure triangle to masonry base. Par 12 Crest width of pentagonal profile Par 13 Base width when crest is made a function of former Par 14 Formula for weatherboard crest width at various depths Par 15 Effect of inclined back Par 16 Limiting unit pressure in American works exceeds 20 tons Par 17 Design of section below limiting depth Pars 18—20 Example worked out. Par 21 Trench curtain beneath actual base Par 22 Example of drawing line of pressures, old method Par. 23 Reduction of measured lengths in force polygon to actual quantities Par 24 Graphical distribution of pressure on base Par 25 Mean and maximum pressures
deduced Par 26 Examples of two further cases Par 27 Example of use of Haessler's polygon Par 28 Graphical reduction of inclined pressure triangle to one of horizontal base Par 29 Two further examples of dam sections Par 30 Chartrum Dam Par 31 Panjyar Dam Par 32 Marikanave Dam Par 33 Bhatagiri Dam Par 34 Cheeseman Dam Par 35 New Croton Dam Par 36 Cross River Dam Par 37 Ashokan Dam Par 38 Roosevelt Dam Par 39 Assurn Dam

SECTION II GRAVITY WEIRS

Par 40 Statement of conditions Par 41 Explanatory diagram Area of triangle of pressure Distance of its application above base of wall Par 42 Base width Crest width Par 43 Base width when crest is proportional to base Par 44 Effect of reverse pressure of tail water Par 45 Graphical demonstrations of effect at different levels of water on Narora Weir Par 46 Effects of three states of reciprocal head and tail water levels Par 47 Moments of water pressure on Narora Weir during the three states Par 48 Value of d or up stream level Par 49 Simplification of above by substituting mean depth for area and for hydraulic mean depth Par 50 Effect of canting forward and of reversing a vertical section Par 51 Dhuksara Weir Par 52 La Grange Weir Par 53 Granite Reef Weir Par 54 Varanpur Weir Par 55 Castlewood Weir Par 56 Folsom Weir Par 57 Coolgardie Reservoir Weir Par 58 Hybrid section base width

Editors Notes D

pp 36–76

pp 77–78

CHAPTER III

SECTION I ARCHED DAMS (TYPE B)

Par 1 Principles involved Par 2 Weight conveyed to base water pressure to sides Par 3 Long and short formulae (1) to (4) for stress on arch Par 4 Theoretical profile Par 5 Stress compared with that in bridge arch Par 6 Vertical backed the best profile Par 7 Equiaangular profile why adopted Par 8 Water pressure and effect on arch Par 9 Bear Valley Dam Par 10 Pathfinder Par 11 Shoshone Par 12 Sweetwater Par 13 Barossa Par 14 Lightow Par 15 Burren Jack

SECTION II

ARCH BUTTRESS (TYPE C) AND PANEL BUTTRESS (TYPE D)

Par 16 Economy in cost (Type C) Pars 17–18 Vir Nal Dam analysis Par 19 Improvement suggested Par 20 Effect of adopting segmental arch Par 21 BELAHULI DAM Par 22 Objections to design Par 23 Stresses caused by inclination of arch Par 24 Design of 14 foot arch buttress dam Par 25 Reverse pressure small effect of Par 26 Dimensions of piers Par 27 Pressures on pier and foundation Par 8 Oedam Dam description of and analysis suggested improvements Par 29 Description of Type D reinforced concrete box dams Par 30 Schuylerville Dam and alternative design compared Par 31

Editors Notes I

pp 70–93

pp 98–99
CONTENTS

CHAPTER IV

PIERS ARCHES ABUTMENTS AND FLOORS

Par 1 Proportion of pier thickness to span in ordinary bridges
Par 2 Stresses to which piers of irrigation works are subject
Par 3 Investigations of longitudinal stress in pier of Riswaniya regulator
Par 4 Thickness dependent on span and depth of water
Par 5 Thickness suitable for different spans
Par 6 Assut regulators
Par 7 Assut regulators
Par 8 Maximum intensity of pressure and distribution on pier base
Par 9 Piers on mass foundations—spread of pressure area
Par 10 Permissible load on bile silt and other sands
Par 11 Budki Superpassage foundations
Par 12 Table II of proportional thickness of piers in various aqueducts—rule deduced
Par 13 Thrust of arches formula for
Par 14 Example of aqueduct arch and abutment
Par 15 Formula for thickness of rear slope of abutments
Par 16 Effect of earth backing in Fig 4 worked out
Par 17 Thickness of arches—rule for ordinary cases and for aqueducts
Par 18 Statical effect of buttresses in abutments
Par 19 Aprons of river weirs rules for thickness and length
Par 20 Floors of canal falls rules for thickness and lengths
Par 21 Floors of weir sluices
Par 22 Floors of head regulators—rules for thickness and length
Par 23 Water cushions to canal falls

pp 100—109

Editors' Notes I

p 109

CHAPTER V

HYDRAULIC FORMULAS

Par 1 Velocity of jet under any head (1)—discharge through rectangular orifice (2)—approximate formula for above (3)
Par 2 Practical example
Par 3 Precise formula for submerged orifice with example (4)
Par 4 Approximate formula for submerged orifice including velocity of approach (5)
Par 5 Practical examples of use of formulas 5 and 6 and 2 and 4
Par 6 On coefficients affected by shape of orifice
Par 7 Coefficient higher in submerged than in free orifices—modification due to increase of width and depth
Par 8 Table of coefficients for sluice openings of various kinds
Par 9 Effects on value of coefficient by size and position of opening
Par 10 Free overfalls formula for discharge
Par 11 Fnd contraction formula for
Par 12 Lowell coefficient for free over falls formula for discharge when $C = 623 (8)$—discussion on the coefficient
Par 13 Practical example velocity of approach formula for multiplier
Par 14 Example of application of formula
Par 15 Case of submerged overfalls erroneous treatment sometimes adopted
Par 16 Herschel's method adopted
Par 17 velocities of approach (Table IV Series II to VIII)
Par 18 Estimation of velocity of approach
Par 19 Notch falls coefficient
Par 20 Fall through bridge considered
Par 21 Increase in coefficient
Par 22 Conditions of depressed arch
Par 23 Reduced coefficient for broad crests of weirs
Par 24 Chezy's formula (13)—Kutter's coefficient (14)—values of n for canals
Par 25 Use of tables further values of n
Par 26 Col. Moore's tables short formula for
Par 30 Methods of estimating flood
CHAPTER VI
DIVERSION WEIRS ON SAND FOUNDATIONS

Par 1 Preliminary Par 2 Principles involved Par 3 Earth dam over sand
Par 4 Determining factor percolation Par 5 Status as compared with pipes
Par 6 Length of base to be multiple of head Par 7 Case of drop wall and floor
Par 8 Salient point in design Par 9 Values adopted for factor c Par 10 Factor of safety Par 11 Profile and thickness of floor Par 12 Hydrostatic pressure and immersion Par 13 Loss of weight from displacement Par 14 Effect produced by different water levels Par 15 Rear projection of floor Par 16 Consideration of rear apron Par 17-18 Fore apron and talus Par 19 Value assigned to vertical curtains Par 20 Practical example Par 21 Formula for width of apron Par 22 Dimensions should be multiples of c Par 23 Apportionment of parts of weir Par 24 Thickness of rear apron and of base of drop wall Par 25 Thickness of apron or floor Par 26 Considerations affecting width of talus Par 27 Formula adopted—statistical table of talus widths (Table I) Par 28 Narora Weir (type A) analysis of original work Par 29 Alterations made after failure Par 30 Diagram explained Par 31 Burra Weir (type A) analysis of section Par 32 Test applied at different water levels Par 33 Alternative section Par 34 Colerun Weir analysis Par 35 Type B sloping apron Chamb Weir Par 36 Failure reason of Par 37 Explanation of graphical analysis Par 38 Restoration of weir Par 39 Jhelum Weir analysis Par 40 Jamnagar analysis Par 41 Srinagar analysis Par 42 Rockfill weirs (type C) principles explained Par 43 Loose rock body Par 44 Vertical party walls Par 45 Okhla Weir analysis etc Par 46 Delhi Weir curtain walls unnecessary Par 47 Jobra Weir analysis Par 48 Crib weir Par 49 Crib weir with clay layer below Par 50 Dinetta Weir novel subaqueous construction Par 51 Vidyasagar abnormal flood discharge Par 52 Sadhu Nekdik Weir example of earth filling Par 53 Granite Reef Weir on boilier bed Par 54 Alternative section Par 55 Diuleshiwaram Anicut
CHAPTER VII
WEIR SLUICES

Par 1 Functions of weir sluices Par 7 Relative level of sill Par 3 Vantage
Par 4 Efficiency due to deep channel and divide wall Par 5 Relative position
of canal head Par 6 Partial regulation only required Par 7 Dauleshiram
Weir Sluices and alternative design Par 8 Sangam Weir Sluices Par 9
Stresses on head works Par 10 Narora Weir Sluices suggested improvement
Par 11 Analysis of section Par 12 Rupar Weir Sluice remodelling of canal
head Par 13 Chenab Weir Sluices at Khanki—Formula (1) for talus (2) for
width of apron Par 14 Analysis of section Par 15 Jhelum Weir Sluices
analysis—needle closure Par 16 Bengal type of weir sluice Par 17 Dehri Weir
Sluice Par 18 Arched bridge suggested use of weir shutters Par 20 Assut
Regulator Par 21 Description Par 22 Masonry blocks in talus Par 23
Ibramia Canal Head Par 24 Analysis Par 25 Western Jumna Weir Sluices
Par 26 Floor of work Par 27 Analysis (boulder bed) coefficient deduced Par
28 Laguna Weir Head Works description Par 29 Madhopur Weir Sluice
remodelling Par 30 Thickness of Floor Par 31 Term Undersluice

CHAPTER VIII
CANAL HEAD REGULATORS

Par 1 Functions of canal heads Par 2 Prevention of entry of sand Par 3 Sirhind
Canal Head as remodelled Par 4 Chenab Canal Head—Intakes usually in solid
ground Par 5 Son Canal Head—Scheme adopted for prevention of silt deposit
Par 6 Reason for not remodelling old head—Surface inlet Par 10 Narora
Intake—Roller gates first introduced Par 11 Betwa Canal Head Par 12
Alternative design Par 13 Object of breast wall and raised sill Jamrao Canal
Head Par 15 Trebeni Canal Head—Description Par 16 Alternative design
—Comparative quantities of same Par 17 Position of intakes relatively to the
weir—Skew heads example of Par 18 Open skew head Par 19 Irrigation
from streams of intermittent flow Par 20 Rules for thickness and length of
floor Par 21 Dauleshiram and Babbaranka Intakes Godaveri Canals Par 22
Western Jumna Canal Head Par 23 Goulburn Canal Sliding Regulating Gate
Par 24 Description Par 25 Mundoks Canal Head examined Par 27 Folsom
Canal Head Par 29 Twin Falls Canal Intake—Description of work and gates
C P R gates Par 30 Zwegaye Canal Head Burma Par 31 Tennyetkon
Canal Head—Calgary Canal Head

pp 199—219

pp 220—247
CHAPTER IX

CANAL FALLS

Par 1 Introductory remarks
Par 2 Chenab canal notches
Par 3 Determination of length of weir and number of notches
Par 4 Practical example worked out under assumed conditions with fixed overthrow
Par 5 Modification when overthrow is submerged
Par 6 Description of details of designs
Par 7 Description of design of wingless type fall
Par 8 Comparison of cost of either type
Par 9 Jamrao Canal fall descriptive and critical remarks
Par 10 Analysis of section
Par 11 Comparative quantities of several small falls with their multiples
Par 12 Canadian Pacific Railway canal example of wooden construction in 10 foot fall
Par 13 Design influenced by material employed
Par 14 Alternative design of wingless type with comparative cost
Par 15 Example of combined rapid and fall and alternative design
Par 16 Reasons for preference of wood to masonry
Par 17 Reinforced Concrete Fall on Calgary Canal
Par 18 General remarks on principles governing design of falls
Par 19 Ladder Fall at Kushak Agra Canal

pp 248-269

Editor’s Notes

pp 269-272

CHAPTER X

CANAL REGULATION BRIDGES AND ESCAPE HEADS

Par 1 Position and disposition of regulation bridges
Par 2 Principles governing design
Par 3-6 Description of design for regulation bridge and branch head
Par 7 Raswaniya Regulator—criticism of details
Par 8 Design for a bifurcation
Par 9-10 Canal escapes generally discussed
Par 11 Design for escape head under assumed conditions
Par 12 Details of design
Par 13 Design of cross canal regulation bridge below escape head
Par 14 Escape fall on Godaveri Eastern Canal critically reviewed
Par 15 Combined escape and siphon on Comanur Canal Madras
Par 16 Koshesha Escape Head Egypt—criticism of design
Par 17 Alternative design
Par 18 Distributary heads—wooden windlasses
Par 19 Escape head on Calgary Canal
Par 20 Bifurcation on Calgary Canal

pp 273-290

CHAPTER XI

CANAL CROSS DRAINAGE WORKS

Par 1 Various means adopted for the disposal of cross-drainage
Par 2 Thora Nala Aqueduct—reduction of waterway in aqueducts
Par 3 Thickness of arches rule formulated based on depth of water carried by parapets
Par 4 Piers thickness of arches in floor
Par 5 Objection to invert arches in floor
Par 6 Disposition of wings usual in aqueducts
Par 7 Keri Aqiqeduck Son Canal—critical remarks
Par 8 Narubra Aqueduct over Kali Nadi—history and description
Par 9 Deep foundations a necessity
Par 10 Obstruction of passage due to arched superstructure
Par 11 Action of flood on river bed described
Par 12 Steel girder superstructure and wider spans advocated
Par 13 Lengthening of bridges to
CHAPTER XII

RESERVOIRS AND TANKS

Par 1 Sources of supply Par 2 Statistics required—dam site Par 3 Capacity of tanks—contours of area Par 4 Formulas for capacity duty of water in Madras—absorption and evaporation Par 5 No limit to height of hydraulic fill dams Par 6 Construction with and without puddle core Par 7 West construction described Par 8 Hydraulic method of construction Par 9 Description of means employed Giant Monitor Par 10 Necava Hydraulic Fill Dam Par 11 Ogawa Dam Par 12 Maladevi Earthen Dam Stepped waste weir Par 13 Zumi Dam—rock fill and hydraulic earth fill Par 14 Alfred Rock Fill Dam Par 15 Millner Dam—dry rubble masonry backed with hydraulic earth Par 16 Lower Otay Dam—steel core Par 17 Sand dam—how rendered water tight Par 18 Jeypore Sand Dam—principle involved Par 19 Dimensions of puddle walls Par 20 Dimensions of embankments—free board Par 21 Masonry dams—construction of Par 22 Disposal of surplus water—means of reducing flood level Par 23 Bhagwan Weir automatic crest shutters or gates Par 24 Description of Bhagwan Dam Par 25 Lakes Fife and Whiting—description of Vira and Nalwana canal work Par 26 Lake Fife automatic gates—Description Par 27 Goulburn Weir Par 28 Alternative design Par 29 Assuan Dam—raising of Par 32 Bye wash or spillway Kushuk Falls Par 33 Penyar project Vimaloka Dam and site plan Par 34 Roosevelt Dam Salt River Par 35 Tolsom Canal Head Works Par 36 Ll Grange Weir Par 37 Tullock Canal Par 38 Durka Weir project Par 39 Falling gates Par 41 Tank outlets Par 42 Breast wall type Par 43 Same larger size Par 44 Rear chamber Par 45 Anti friction rollers to gates Par 46 Plug outlets Par 47 Screw rods for same Par 48 Points in designs Par 50 Maladevi Tank outlet Par 51 Waterworks tower Par 57 Example of Hury Reservoir tower and culvert best section for culvert Par 53 Suspension of pipes in culvert—Hubli Reservoir Par 54 Ceylon concrete outlet pipes Par 55 Silt deposit remedy for Par 56 Coolgardie pipe line Par 57 Balla Bulling reinforced concrete reservoir Par 59 St Andrew's Rapids Camera curtain dam pp 320–383
CHAPTER XIV

SCREW GEAR AND ROLLER GATES

INDEX

LIST OF ILLUSTRATIONS

CHAPTER II

SECTION I

<table>
<thead>
<tr>
<th>No.</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elementary triangular profile</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>Diagram of base of dam below limit depth</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Section illustrative of calculations for base widths</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Diagram of pentagonal section 100 feet high</td>
<td>49</td>
</tr>
<tr>
<td>5a</td>
<td>Graphical distribution of pressure on base</td>
<td>50</td>
</tr>
<tr>
<td>5b</td>
<td>at three other points on base</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>at point within middle third</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>8a 8b 8c Diagram illustrative of use of Hessler’s polygon</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>Diagram illustrative of transformation of pressure triangle</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>Pressure diagram 80 foot dam</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>60 foot dam</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Chartrain Dam</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>Periyar Dam</td>
<td>56</td>
</tr>
<tr>
<td>13</td>
<td>site plan</td>
<td>56</td>
</tr>
<tr>
<td>13a</td>
<td>Marikanave Dam</td>
<td>57</td>
</tr>
<tr>
<td>14</td>
<td>Bhatgarh Dam</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>Cheeseman Dam</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>New Croton Dam</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>site plan</td>
<td>59</td>
</tr>
<tr>
<td>18</td>
<td>Cross River Dam</td>
<td>60</td>
</tr>
<tr>
<td>19</td>
<td>Asholan Dam</td>
<td>61</td>
</tr>
<tr>
<td>20</td>
<td>Roosevelt Dam</td>
<td>61</td>
</tr>
<tr>
<td>20a</td>
<td>site plan</td>
<td>62</td>
</tr>
<tr>
<td>21</td>
<td>Assuan Dam</td>
<td>63</td>
</tr>
<tr>
<td>21a</td>
<td>plan</td>
<td>63</td>
</tr>
<tr>
<td>21b</td>
<td>elevation</td>
<td>64</td>
</tr>
<tr>
<td>22</td>
<td>photograph</td>
<td>65</td>
</tr>
</tbody>
</table>

SECTION II

<table>
<thead>
<tr>
<th>No.</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Diagram of trapezoidal weir</td>
<td>67</td>
</tr>
<tr>
<td>24</td>
<td>Pressure lines on Narora Weir</td>
<td>69</td>
</tr>
<tr>
<td>25</td>
<td>Sections of wall with vertical back</td>
<td>71</td>
</tr>
<tr>
<td>26</td>
<td>Equiangular section</td>
<td>71</td>
</tr>
<tr>
<td>27</td>
<td>Reversed section</td>
<td>71</td>
</tr>
<tr>
<td>28</td>
<td>Dhukwa Weir</td>
<td>72</td>
</tr>
<tr>
<td>29</td>
<td>La Grande Weir</td>
<td>72</td>
</tr>
<tr>
<td>31</td>
<td>Granite Reef Weir</td>
<td>73</td>
</tr>
<tr>
<td>32</td>
<td>Marijum Weir</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Castlewood Weir</td>
<td>75</td>
</tr>
<tr>
<td>34</td>
<td>Folsom Weir</td>
<td>75</td>
</tr>
<tr>
<td>34a</td>
<td>site plan</td>
<td>75</td>
</tr>
<tr>
<td>35</td>
<td>Coolgardie Weir</td>
<td>76</td>
</tr>
</tbody>
</table>

CHAPTER III

SECTION I

1. Bear Valley Dam
2. Pathfinder Dam
3. Shoshone Dam
4. Sweetwater Dam
4a. plan
4b. photograph
5. Barossa Dam
5a. site plan
7. Barren Jick Dam

SECTION II

8. 8a 8b 8c Mir Alam Dam
9. 9a Belubula Dam
10. Design 64 foot high dam
11. Ogden Dam Utah
12. Schuylerville Weir
13. 13a Alternative design
14. Ellsworth Weir
15. Old Bear Valley Dam

CHAPTER IV

1. 1a Longitudinal section of pier (Raswania Regulator)
2. 2a 2b 2c 2d Assut Regulator
3. Cross section Budha Supetpassage
4. 4a 4b Example of aqueduct arch and abutment

CHAPTER VI

1a. Photograph of Natara Weir Lower Ganges Canal
1. Diagram of pipe under water pressure
2. of weir under hydrostatic pressure
3. Design for weir under given conditions
4. 4a 4b 4c Barora Weir before and after failure with three diagrams
5. 5a 5b Burr Weir diagram of pressure
6. Burr Weir alternative section
7. Upper Colomun Amcut
8. 8a Chenah Weir 8b site plan of head works
LIST OF ILLUSTRATIONS

9 01 Jhelum Weir 9b site plan of head works 164 165
10 01 Jhimrao Weir 165
11 Adinapali Weir 166
12 13 Diagrams of percolation 167
14 Diagram of percolation loose rock weir 168
15 with body walls in weir 169
16 Okhla Weir 170
17 Dehri Weir 170
18 18a Jobra Weir 18b site plan 171 172
19 Crib Weir 173
20 Crib Weir with cula flume 173
21 Dametta Weir 21a site plan 174
22 Madaya Weir 175
23 Sidnan Weir 176
24 Granite Reef Weir 177
25 alternative section 177
26 Dauleshiram Anicut 178
27 Sangam Anicut 179
28 28a 28b Beswada Anicut 179 180
29 Laguna Weir 181
30 alternative section 181
31 Srivakantham Anicut 182
32 Pelandorai Anicut 183
33 38 Plans and Sections Narora Weir 185—191
39 Khanki Weir 195—196
40 Sections Jhelum Weir 197

CHAPTER VII

1 1a 1b 1c Dauleshiram weir sluices 201
3 Sangam weir sluices 203
4 4a Narora weir sluices 204
5 5a 5b Rupar weir sluices 206
5c Weir sluices of the Rupar Weir Photograph 207
6 Khanki weir sluices Facing 207
7 Jhelum weir sluices Rasul 209
8 8a Dehri weir sluices 210
9 9b 9c Jobra weir sluices 211
10 10a 10b Assut Regulator 212
11 11a 11b Ibramiya Canal Head 213
12 12a 12b Western Jumna Weir and weir sluices 215
13 Section of Colorado River 217
13a Laguna Head works 217
14 Madhopur weir sluices 218

CHAPTER VIII

1d Sirhind Canal Head Photograph 220
1a 1b 1c Sirhind Canal Head 222
2 Chunab Canal Head 222
LIST OF ILLUSTRATIONS

FIG
3 3a 3b Son Canal Head 223
4 Surface Inlet Son Canal 224
4a Surface Inlet Son Canal Photograph 225
9 9a Lower Ganges Canal Head (Narora) 225
10 10a 10b Betwa Canal Head (Parichha) 226
11 11a Alternative design 227
12 12a 12b Jamrao Canal Head 228
13 Trebem Canal Head 230
14 Alternative design 231
15 15a 15b Skew Canal Head 233
17 17a 17b Godavari Canal Head (Dauleshwiram) 234
18 18a 18b (Baburlanka) 235
19 Western Jumna Canal Head 236
20 Goulburn Canal Regulating Gate 237
21 Minudoka Canal Head 239
23 Folsom Canal Head 240
25 Photograph of Twin Falls Canal Intake 241
26 26a C P R Canal Regulator and Gates and Photograph 242
27 Zawgyee Canal Head Photograph 243
8 Tenyetkon Canal Head Photograph 245
28a site plan 246
29 Calgary Canal Head Photograph 247

CHAPTER IX

1 Details of notch opening 250
1a 1b Elevation and plan of Chenab Canal Notch Weir 250
 a 2b Design for notch weir to discharge 2 500 cubic feet 251
4 4a 4b Alternative design wingless type 256
5 Jamrao Canal Fall 257
7 Ten foot fall on Calgary Canal 260
Facing 260
7a Photographic view of same 260
8 Alternative design wingless type 263
9 Eleven foot fall and rapid on Calgary Canal 264
Facing 264
9a Photographic view of same 265
10 Alternative design for two 5 1/2 foot falls 266
11 Reinforced concrete fall on Calgary Canal 267
Facing 267
12 Kushak Falls Agra Canal 267
13 Photograph of wingless type fall in Burma 268
14 Type Design of Notch 270

CHAPTER X

1 1a 1b 1c 1d 1e Design of canal cross regulator and skew branch head 274
2 2a 2b 2c Raswamya Regulator 276
3 3a Design for Infrication 277
4 4a 4b 4d Design for escape head 278
5 5a 5b Design for regulator below escape 280
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>6b Surplus full on Godavari Eastern Canal</td>
<td>287</td>
</tr>
<tr>
<td>7</td>
<td>Continum Waste Weir and Syphon</td>
<td>283</td>
</tr>
<tr>
<td>8</td>
<td>8a 8b Ko hesha Escue</td>
<td>284</td>
</tr>
<tr>
<td>9a</td>
<td>9b 9c Alternative Design</td>
<td>286</td>
</tr>
<tr>
<td>10</td>
<td>View of escape head Calgar Canal</td>
<td>288</td>
</tr>
<tr>
<td>11</td>
<td>Bifurcation</td>
<td>289</td>
</tr>
</tbody>
</table>

CHAPTER XI

1. 1a 1b 1c 1d Thora Nala Aqueduct 292
2. 2a 2b 2c 2d Iverai Aqueduct 294
3. 3a 3b 3c Kalib Nadi Aqueduct 297
4. Gunnerum Aqueduct 300
5. Kesaraqwali Aqueduct 302
6. 6a 6b 6c Irao Syphon Aqueduct and alternative section 303
7. Burra Bubsa Syphon 308
8. Photograph of Budki Superpassage 310
9. 11a 11b Chenab Canal Syphon 311
10. 11a 11b Chenab Canal Syphon 312
11. Design for under syphon 313
12. Design for over syphon 313
13. Sohagiah Canal Syphon Egypt 314
14. Madras type dram syphon 316
15. Thapangauing Aqueduct and level crossing 317
16. 16a Dhraunauri Level Crossing Ganges Canal Photograph 319
17. 20-22 Old Kali Nadi Aqueduct 321
18. Delta of River Godavari 323

CHAPTER XII

1. Waghad Dam 329
2. Photograph Guant Monuttor 331
3 and 3a Necaxa Dam and Photograph 332
4. Oigawa Dam 333
5 and 5a Maladevi Dam 334
5b site plan 335
6. Stepped waste weir 336
6a Stepped waste weir 337
7 and 7a Zuni Dam 338
8. Alfred Rock Fill Dam 339
9. Milner Dam 340
10. Lower Otay Dam 341
11. Diagram of sand dam 342
12. Jeyport Sand Dam 343
13. Foundation of a puddle wall 344
14. Bhatgarh automatic gates and weir 345
14a 14b 14c Bhatgarh Dam elevation site plan and detail 346
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIG</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14d</td>
<td>Single Automatic Waste weir Gates Lake Whiting or Bhatgarh Photograph</td>
<td>350</td>
</tr>
<tr>
<td>15</td>
<td>Map of Nira and Mutha Canals</td>
<td>351</td>
</tr>
<tr>
<td>16a</td>
<td>Lake Ife automatic gates</td>
<td>352</td>
</tr>
<tr>
<td>16b</td>
<td>Lake Ife Grouped Batteries of Automatic Gates Photograph</td>
<td>353</td>
</tr>
<tr>
<td>17a</td>
<td>Goulburn Weir</td>
<td>354</td>
</tr>
<tr>
<td>17b</td>
<td>Assurn Dam elevation and site plan</td>
<td>355</td>
</tr>
<tr>
<td>19a</td>
<td>Spillway of Ashti Tank</td>
<td>356</td>
</tr>
<tr>
<td>19b</td>
<td>and 19c Minidoka Dam and site plan</td>
<td>357</td>
</tr>
<tr>
<td>21a</td>
<td>Tolsom Head Works site plan</td>
<td>358</td>
</tr>
<tr>
<td>23a</td>
<td>Site plan La Grange Weir</td>
<td>359</td>
</tr>
<tr>
<td>23b</td>
<td>Turlock Canal</td>
<td>360</td>
</tr>
<tr>
<td>27a</td>
<td>Dhulwra Weir</td>
<td>361</td>
</tr>
<tr>
<td>29</td>
<td>Tank outlet</td>
<td>362</td>
</tr>
<tr>
<td>31a</td>
<td>Larger barrel outlet and breast wall</td>
<td></td>
</tr>
<tr>
<td>31b</td>
<td>Facing</td>
<td>363</td>
</tr>
<tr>
<td>32</td>
<td>Plug and barrel outlet</td>
<td>364</td>
</tr>
<tr>
<td>33</td>
<td>Sections of plugs</td>
<td>365</td>
</tr>
<tr>
<td>35</td>
<td>Maladevi tank outlet</td>
<td>366</td>
</tr>
<tr>
<td>36</td>
<td>Outlet Sluices</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Waterworks valve tower</td>
<td>367</td>
</tr>
<tr>
<td>38</td>
<td>Hurry Reservoir tower</td>
<td>368</td>
</tr>
<tr>
<td>39</td>
<td>Hubli pipe tunnel</td>
<td>369</td>
</tr>
<tr>
<td>40</td>
<td>Ceylon tank pipes</td>
<td>370</td>
</tr>
<tr>
<td>41a</td>
<td>Coolgardie pipe line</td>
<td></td>
</tr>
<tr>
<td>41b</td>
<td>Facing</td>
<td>371</td>
</tr>
<tr>
<td>41c</td>
<td>Coolgardie pipe line</td>
<td>372</td>
</tr>
<tr>
<td>42a</td>
<td>Balla Bulting Reservoir</td>
<td>373</td>
</tr>
<tr>
<td>43</td>
<td>Location map of St Andrew’s Rapid Dam</td>
<td>374</td>
</tr>
<tr>
<td>44</td>
<td>Elevation and section of dam</td>
<td>375</td>
</tr>
<tr>
<td>45</td>
<td>and 46 Photographs of St Andrew’s Rapid Dam</td>
<td>376</td>
</tr>
<tr>
<td>47</td>
<td>Photographs of St Andrew’s Rapid Dam</td>
<td>377</td>
</tr>
<tr>
<td>48</td>
<td>Photographs of St Andrew’s Rapid Dam</td>
<td>378</td>
</tr>
<tr>
<td>49</td>
<td>Horse Scrapers Calgary Canal Photograph</td>
<td>379</td>
</tr>
<tr>
<td>50</td>
<td>Horse Scrapers Calgary Canal Photograph</td>
<td>380</td>
</tr>
<tr>
<td>51</td>
<td>Horse Scrapers Calgary Canal Photograph</td>
<td>381</td>
</tr>
<tr>
<td>52</td>
<td>Horse Scrapers Calgary Canal Photograph</td>
<td>382</td>
</tr>
<tr>
<td>53</td>
<td>Horse Scrapers Calgary Canal Photograph</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER XIII

1. Contour map of Sidnai Canal 388
2. Map of Canadian Pacific Railway Irrigation Block 390
3. View of Calgary Canal in side cutting 392
4. Canal Inspection House Photograph 393
5. Excavation by Steam Navvy Calgary Canal Photograph 394
6. Photographs of St Andrew’s Rapid Dam 395

CHAPTER XIV

1. Primitive screw gear 402
2. 402
3. Screw gear with thrust plates 403
4. 403
5. Madras screw gear 404
6. Group of three screws in pipes 405
7. System where male screw is revolved 406
8. Waghad Tank screw gear 407
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battman's screw gear</td>
<td>408</td>
</tr>
<tr>
<td>American</td>
<td>409</td>
</tr>
<tr>
<td>Bhatgarh Dam lifting gear</td>
<td>410</td>
</tr>
<tr>
<td>11b</td>
<td>411</td>
</tr>
<tr>
<td>Rollers on Chenab Weir sluice gates</td>
<td>412</td>
</tr>
<tr>
<td>Diagram of Stones' gate</td>
<td>413</td>
</tr>
<tr>
<td>Assuan Dam high level sluices</td>
<td>414</td>
</tr>
<tr>
<td>middle level sluices</td>
<td>415</td>
</tr>
<tr>
<td>lowest level sluices</td>
<td>416</td>
</tr>
<tr>
<td>Horizontal stanching of gates</td>
<td>417</td>
</tr>
<tr>
<td>Design of gate</td>
<td>418</td>
</tr>
</tbody>
</table>
LIST OF FORMULAS

CHAPTER II

SECTION I

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>(b = \frac{H}{\sqrt[3]{\rho}} = \frac{3}{2}H)</td>
<td>Base width of dams</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>(s = s_1 \left(1 \pm \frac{6c}{b} \right))</td>
<td>Relation of maximum and mean stress</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>(W = \frac{H^2 \sqrt{\rho}}{\rho} = \frac{H^2}{48} \text{Tons})</td>
<td>Weight of (\Delta) prism (reservoir empty)</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>(R = 12 \sqrt{\frac{\mu + 1}{\rho}} = 12 \frac{H^2}{40} \text{Tons})</td>
<td>Value of (R) (reservoir full)</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>(s^2 = H \nu \rho = \frac{H}{10} \text{Tons})</td>
<td>Maximum unit stress (reservoir empty)</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>(s^2 = H \nu (\rho + 1) = \frac{H}{111} \text{Tons})</td>
<td>Maximum unit stress (reservoir full)</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>(H^\lambda = \frac{\lambda}{\rho + 1})</td>
<td>Limiting depth</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>(c = \sqrt{H})</td>
<td>Crest width</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>(b = \frac{H}{\sqrt[3]{\rho}} \times \sqrt{1 + \frac{1}{2r^2 - 2r^2}})</td>
<td>Base width of dams when (r = \frac{c}{b}) in pentagonal profile</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>(h = \sqrt{H} + (2 \frac{c}{b} - \sqrt{H}))</td>
<td>Weatherboard</td>
</tr>
</tbody>
</table>

SECTION II

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>41</td>
<td>(A = H \left(\frac{H + 2d}{l} \right))</td>
<td>Area of trapezoid of water pressure</td>
</tr>
<tr>
<td>111</td>
<td>41</td>
<td>(A = H \left(\frac{H + \frac{7}{l}}{l} \right))</td>
<td>Area of trapezoid when back of wall is inclined</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>(h = \frac{H}{3} \left(H + \frac{3l}{l} \right))</td>
<td>Height of centre of water pressure above base</td>
</tr>
<tr>
<td>13</td>
<td>42</td>
<td>(b = \frac{H + d}{})</td>
<td>Approximate base width of weirs</td>
</tr>
<tr>
<td>14</td>
<td>42</td>
<td>(c = \sqrt{H} + \sqrt{t})</td>
<td>Crest width of weirs</td>
</tr>
<tr>
<td>15</td>
<td>43</td>
<td>(b = \frac{H + d}{\sqrt{r^2 + 1} - r^2} \times \sqrt{r^2 + 1} - r^2)</td>
<td>Base width when (r = \frac{c}{b})</td>
</tr>
</tbody>
</table>
LIST OF FORMULAS

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>15a</td>
<td>43</td>
<td>(b = \frac{6 (H + d)}{\rho})</td>
<td>Base width when (r = 0.25) and (\rho = 3).</td>
</tr>
<tr>
<td>16</td>
<td>47</td>
<td>(M = \frac{H^2}{6} (H + 3d))</td>
<td>Moment of trapezoid of water pressure</td>
</tr>
<tr>
<td>17</td>
<td>49</td>
<td>(Q = 100cD^3/\sqrt{S})</td>
<td>Approximate discharge formula of channels.</td>
</tr>
<tr>
<td>18</td>
<td>63</td>
<td>(b = \frac{H + d}{\rho})</td>
<td>"Hybrid" weir, base width.</td>
</tr>
</tbody>
</table>

CHAPTER III

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>(b = \frac{RHw}{s_1})</td>
<td>Base width and mean stress "short" formulas</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>(\lambda, \text{ or } s = \frac{RHW}{b} \times \frac{2R}{R+r})</td>
<td>Maximum stress.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>(\lambda, \text{ or } s = \frac{2HW}{b} \left(\frac{2}{R} - \frac{b}{R} \right))</td>
<td>Maximum stress in terms of (R) and (b). "Long" formula.</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>(b = R \left(1 - \frac{\lambda}{\sqrt{1-\frac{2HW}{\lambda}}} \right))</td>
<td>"Long" formula for base width.</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>(s = R_2 \times \rho \times \sin \theta)</td>
<td>Stress induced by weight of arch ring when inclined.</td>
</tr>
</tbody>
</table>

CHAPTER IV

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>(P = wlt)</td>
<td>Horizontal thrust of arch.</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>(t = \frac{1}{2} r + \frac{1}{2} V + 2)</td>
<td>Thickness of abutments.</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>(t = 4 \sqrt{r})</td>
<td>Thickness of arch.</td>
</tr>
</tbody>
</table>

CHAPTER V

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(V = c \sqrt{2gH})</td>
<td>Discharge from orifice.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(Q = cl \frac{3}{5} \sqrt{2g} (h_3^3 - h_1^3))</td>
<td>Discharge from orifice</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(Q = cl \sqrt{2g} \frac{H}{1})</td>
<td>Discharge from orifice.</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>(Q = cl \frac{5}{3} \left(\sqrt{H} \sqrt{h_1} - h_1 \right) + \frac{1}{2})</td>
<td>Submerged orifices with velocity of approach.</td>
</tr>
</tbody>
</table>
LIST OF FORMULAS

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>(c_1 = c \sqrt{1 + \frac{h}{II}})</td>
<td>Modified coefficient</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>(Q = cA \sqrt{2g(H + h)})</td>
<td>Approximate formula orifices</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>(Q = \frac{2}{3} c d \sqrt{2g}d \times d = 5.35 cld^3)</td>
<td>Free overfall.</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>(Q = 333.3 cld^3)</td>
<td>Free overfall</td>
</tr>
<tr>
<td>8a</td>
<td>16</td>
<td>(q = 333 (nd)^3)</td>
<td>Submerged fall discharge</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>(c_1 = c \times \left{ \left(1 + \frac{h}{d}\right)^n - \left(\frac{h}{d}\right)^n \right})</td>
<td>Modification of coefficient, velocity of approach</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>(Q = 100 Ac \sqrt{RS})</td>
<td>Discharge of channels</td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>(C = \frac{41.6 + \frac{1811}{n} + \frac{00281}{S}}{1 + \left(41.6 + \frac{00281}{S}\right) - \frac{n}{\sqrt{R}}} } - \frac{a}{c})</td>
<td>Kutter's formula</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>(V = 705 \times 003 c^2)</td>
<td>Wagner's mean velocity formula</td>
</tr>
<tr>
<td>17</td>
<td>45</td>
<td>(l = \frac{d_2 - d_1}{S} + D \left(\frac{t}{S} - \frac{(100c)^2}{g}\right))</td>
<td>Backwater curve</td>
</tr>
<tr>
<td>18</td>
<td>48</td>
<td>(l = -\frac{d_1 - d_2}{S} + D \left(\frac{t}{S} - \frac{(100c)^2}{g}\right))</td>
<td>Falling surface curve</td>
</tr>
<tr>
<td>20</td>
<td>57</td>
<td>(O = k_1 100 K^1)</td>
<td>Ryves flood discharge, second feet</td>
</tr>
<tr>
<td>21</td>
<td>57</td>
<td>(Q = k 100 K^1)</td>
<td>Dickens flood discharge, second feet</td>
</tr>
<tr>
<td>22</td>
<td>57</td>
<td>(Q = 200 K^1)</td>
<td>Fanning's flood discharge, second feet</td>
</tr>
<tr>
<td>23</td>
<td>67</td>
<td>(H = M \times \frac{t^2}{2g})</td>
<td>Head required for syphons</td>
</tr>
<tr>
<td>24</td>
<td>67</td>
<td>(V = 8.035 \sqrt{\frac{H}{M}})</td>
<td>Velocity due to head</td>
</tr>
<tr>
<td>25</td>
<td>67</td>
<td>(H = M \times \frac{t^2}{2g} - \frac{1 a^2}{2g})</td>
<td>Head including velocity of approach</td>
</tr>
<tr>
<td>26</td>
<td>67</td>
<td>(l = \sqrt{\frac{2gH}{V} + \frac{1 a^2}{V}} \frac{a}{V}.)</td>
<td>Velocity including that of approach</td>
</tr>
</tbody>
</table>
LIST OF FORMULAS

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>15a</td>
<td>43</td>
<td>$b = 6 \left(H + d\right)$</td>
<td>Base width when $r = 0.25$ and $\rho = 1.4$</td>
</tr>
<tr>
<td>16</td>
<td>47</td>
<td>$M = \frac{H^2}{6} \left(H + 3d\right)$</td>
<td>Moment of trapezoid of water pressure</td>
</tr>
<tr>
<td>17</td>
<td>49</td>
<td>$Q = 100cD^3 \sqrt{S}$</td>
<td>Approximate discharge formula of channels</td>
</tr>
<tr>
<td>18</td>
<td>63</td>
<td>$b = \frac{H + d}{\rho}$</td>
<td>"Hybrid" weir, base width</td>
</tr>
</tbody>
</table>

CHAPTER III

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>$b = \frac{RH \nu}{s_t}$</td>
<td>Base width and mean stress "short formulas"</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>λ or $s = \frac{lH\omega}{b} \times \frac{2R}{K + r}$</td>
<td>Maximum stress</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>λ, or $s = \frac{b}{K} \left(2 - \frac{b}{R}\right)$</td>
<td>Maximum stress in terms of R and b "Long" formula</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>$b = R \left(1 - \sqrt{1 - \frac{2Hu}{\lambda}}\right)$</td>
<td>"Long" formula for base width</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>$s = R_1 \alpha \rho \sin \theta$</td>
<td>Stress induced by weight of arch ring when inclined</td>
</tr>
</tbody>
</table>

CHAPTER IV

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>$P = wrl$</td>
<td>Horizontal thrust of arch</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>$t = 2r + rV + a$</td>
<td>Thickness of abutments</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>$t = \sqrt{r}$</td>
<td>Thickness of arch</td>
</tr>
</tbody>
</table>

CHAPTER V

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$V = c \sqrt{2gH}$</td>
<td>Discharge from orifice</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$Q = cA \sqrt{2gH}$</td>
<td>Discharge from orifice</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$Q = cA \sqrt{2gH}$</td>
<td>Discharge from orifice</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>$Q = cA \left{\frac{1}{2} \left[H - h_1 \sqrt{h_1}\right] \right}$</td>
<td>Submerged orifices with velocity of approach</td>
</tr>
<tr>
<td>No</td>
<td>PARA</td>
<td>FORMULA</td>
<td>SUBJECT</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>(c_1 = c \sqrt{1 + \frac{h}{H}})</td>
<td>Modified coefficient.</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>(Q = cA \sqrt{2g (H + h)})</td>
<td>Approximate formula orifices.</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>(Q = \frac{2}{5} d \sqrt{2gd} \times d = 5.35 \text{ cm}^3\text{ s}^{-1})</td>
<td>Free overfall.</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>(Q = 3333 \text{ cm}^3\text{ s}^{-1})</td>
<td>Free overfall.</td>
</tr>
<tr>
<td>8a</td>
<td>16</td>
<td>(q = 3.33 \text{ (nd)}^3)</td>
<td>Submerged fall discharge.</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>(c_1 = c \times \left{ \left(1 + \frac{h}{d}\right)^2 - \left(\frac{h}{d}\right)^3 \right})</td>
<td>Modification of coefficient, velocity of approach.</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>(Q = 100 \Delta t \sqrt{R})</td>
<td>Discharge of channels.</td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>(C = \frac{416 + \frac{1811}{n} + \frac{0.0281}{S}}{1 + \left(416 + \frac{0.0281}{S}\right) - \frac{n}{\sqrt{R}}}</td>
<td>Kutter's formula.</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>(V = 705 \times 0.03 \text{ m}^2)</td>
<td>Wagner's mean velocity formula</td>
</tr>
<tr>
<td>17</td>
<td>45</td>
<td>(l = \frac{d_2 - d_1}{S} + D \left(\frac{1}{S} - \frac{(100C)^2}{g}\right))</td>
<td>Backwater curve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\times \left[\phi \left(\frac{d_1}{D}\right) - \phi \left(\frac{d_2}{D}\right)\right])</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>48</td>
<td>(l = -\frac{d_1 - d_2}{S} + D \left(\frac{1}{S} - \frac{(100C)^2}{g}\right))</td>
<td>Falling surface curve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\times \left[\phi \left(\frac{d_1}{D}\right) - \phi \left(\frac{d_2}{D}\right)\right])</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>57</td>
<td>(Q = k_1 100 K_1)</td>
<td>Ryves' flood discharge, second feet.</td>
</tr>
<tr>
<td>21</td>
<td>57</td>
<td>(Q = k 100 K_1)</td>
<td>Dickens' flood discharge, second feet.</td>
</tr>
<tr>
<td>22</td>
<td>57</td>
<td>(Q = 200 K_1)</td>
<td>Fanning flood discharge, second feet.</td>
</tr>
<tr>
<td>23</td>
<td>67</td>
<td>(H = M \times \frac{V^2}{2g})</td>
<td>Head required for syphons</td>
</tr>
<tr>
<td>24</td>
<td>67</td>
<td>(V = 8035 \sqrt{\frac{H}{M}})</td>
<td>Velocity due to head</td>
</tr>
<tr>
<td>25</td>
<td>67</td>
<td>(H = M \times \frac{V^2}{2g} - \frac{V_0^2}{2g})</td>
<td>Head including velocity of approach</td>
</tr>
<tr>
<td>26</td>
<td>67</td>
<td>(V = \sqrt{\frac{2gH + V_0^2}{M}})</td>
<td>Velocity, including that of approach</td>
</tr>
</tbody>
</table>
LIST OF FORMULAS

CHAPTER VI

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>[W = 4c \times \sqrt[3]{\frac{H^a}{13}}]</td>
<td>Width of apron. (H^a) is height of weir shutter crest above floor. In sloping apron (H^b), or solid crest above L.W.L., is used.</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>[h = \frac{H^b + d}{\sqrt{p}}]</td>
<td>Base thickness of weir wall. (H) is height of masonry wall.</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>[t = \frac{\frac{4}{3} H - h}{(\rho - 1) \text{ or } \rho}]</td>
<td>Thickness of apron. (H) = head; (h) = neutralised head.</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>[L = 10c \sqrt{\frac{H^b}{10}} \times \sqrt[3]{\frac{q}{75}}]</td>
<td>Distance of talus from crest wall with sloping aprons; 10(\frac{1}{2})c or 11(\frac{1}{2})c may be used. (q) = unit flood discharge.</td>
</tr>
</tbody>
</table>

CHAPTER VII

<table>
<thead>
<tr>
<th>NO</th>
<th>PAR</th>
<th>FORMULA</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>[L = 15c \sqrt{\frac{H^b}{10}} \times \sqrt[3]{\frac{q}{75}}]</td>
<td>Distance of toe of talus from head work.</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>[W = 7c \sqrt{\frac{H^a}{13}}]</td>
<td>Width of apron.</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>[t = \sqrt{\frac{3H}{2}}]</td>
<td>Thickness of floor.</td>
</tr>
</tbody>
</table>
SUMMARY OF TABLES IN CHAPTER V.

<table>
<thead>
<tr>
<th>No.</th>
<th>No.</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>14</td>
<td>Discharge of free overfalls</td>
<td>116</td>
</tr>
<tr>
<td>III</td>
<td>18</td>
<td>Factors for submerged weirs</td>
<td>117</td>
</tr>
<tr>
<td>IV</td>
<td>19</td>
<td>Discharges of submerged weirs (Series II to VIII)</td>
<td>118-120</td>
</tr>
<tr>
<td>VI</td>
<td>46 & 47</td>
<td>Backwater function</td>
<td>131</td>
</tr>
<tr>
<td>VII</td>
<td>48 & 49</td>
<td>Falling surface function</td>
<td>133</td>
</tr>
<tr>
<td>VIII</td>
<td>57</td>
<td>Discharges by Rivers and Dickens formula</td>
<td>137</td>
</tr>
<tr>
<td>IX</td>
<td>57</td>
<td>Run-off in inches in 24 hours by both formulas</td>
<td>137</td>
</tr>
<tr>
<td>XI</td>
<td>64</td>
<td>Waste weir run-off</td>
<td>138</td>
</tr>
<tr>
<td>XII</td>
<td>65</td>
<td>Yields of three typical catchment areas and run-off</td>
<td>139</td>
</tr>
<tr>
<td>XIII</td>
<td>66</td>
<td>Discharges of wasteways</td>
<td>140</td>
</tr>
</tbody>
</table>
THE PRACTICAL DESIGN OF IRRIGATION WORKS

CHAPTER I

RETAINING WALLS

(1) Retaining walls whose function is the retaining or holding back of earthen banks form one of the most considerable items of the component parts of masonry structures. The design of such should satisfy conditions that combine economy of material with stability. To effect this desirable end with accuracy and in accordance with scientific principles it will be necessary to possess a thorough understanding of the theoretical problem involved.

(2) The diagram in Fig. 1 presents a graphical statement of the theory of earth pressure. \(AO \) is the back of the retaining wall, \(AB \) the terrain line, or top surface of the bank which is upheled and \(O O_1 \) the horizontal base line representing the natural surface of the ground. \(OB \) is the plane of repose of the earth forming this backing, the angle \(BOO_1 \) or \(\phi \) being thus the angle of repose, i.e., the steepest slope at which the earth will stand.
DESIGN OF IRRIGATION WORKS

when unsupported The triangle AOB represents, therefore, the largest prism of earth held up by the wall.

In case of failure of the wall, the earth backing will break away in some line OX in the prism AOB, intermediate between AO and OB, and OX is termed the plane of rupture. Of all possible positions of OX, that one which ensures the maximum thrust on the wall has alone to be considered as the true plane of rupture, and thus the prism AOX is the portion of the earth backing tending to overturn the wall and will be found, as hereafter explained, to have a much greater effect than the larger whole prism AOB, on the supposition that the plane of rupture is coincident with that of repose, which is not the case.

(3) By reference to Figs 1a and 1b the forces in equilibrium will be found as follows —

1. The weight of the prism AOX acting vertically
2. The normal reaction of the retaining wall acting at right angles to the direction of the back of the wall OA
3. The friction of the prism on the inner surface of the retaining wall acting upwards
4. The normal reaction of the plane of rupture OX
5. The friction of the prism AOX on the plane of rupture acting upwards
6. The cohesion of the earth in the plane of rupture acting upwards

(4) Fig 1a represents the force polygon of forces 1 to 5, Fig 1b the same but inclusive of (6). In both diagrams forces 2 and 3 are components of r and 4 and 5 of q. The polygon is thus resolved into the triangle of forces $p q r$. Of these p is the weight of the prism AOX, represented by the area of the triangle AOX, q is the reaction of the plane of rupture, and r the resultant pressure on the back of the wall, both q and r being modified in direction by angles of friction. The direction of q is determined by the angle θ, which it forms with the vertical p, the length of r is dependent on the value of this angle θ. Now θ is also the angle between the planes of repose and of rupture or the divergence of OB and OX. Hence the primary necessity of ascertaining the true value of this angle, on which that of the force r is dependent.

(5) The two diagrams 1a and 1b, show clearly the great reducing influence exerted on the value of r by the introduction of the comparatively small force (6) representing cohesion. No definite value can possibly be assigned to cohesion as it must necessarily vary with differing soils and conditions of moisture consolidation etc., for instance from pure sand which is almost devoid of the property of cohesion, to stiff clay in which this property is highly developed. Consequently we are compelled to omit

* But see Editor's Notes at the end of this Chapter — Ed
this force, though always present in a greater or less degree, from inclusion in the graphical statement.

Although this omission will apparently somewhat vitiate the value of the theory of earth pressure, as it presupposes a state of things in the condition of the earth which does not actually exist, yet it will be found that the neglect of cohesion will not preclude the successful use of the remaining five forces to which approximately correct values can be assigned provided that the unknown value of cohesion be considered as supplying a definite, though not precisely ascertainable factor of safety in favour of the stability of the wall.

It is well known that retaining walls, which according to received theory are designed of too weak a section to be safe, are in reality possessed of a large factor of safety. This point was fully brought out in the discussion on retaining walls in the "Minutes of the Proceedings of the Institution of Civil Engineers," Vol. LXV. Consequently the theory of earth pressure, though not reducible to absolute exactitude as in the case of fluid pressure, will still be found an indispensable and reliable guide in the economical design of retaining walls. The sections need only be designed of sufficient statical properties to withstand the theoretical earth pressure. That is to say, the moment of stability of the wall need be only just equal to that of the aggressive forces, or in equivalent graphical terms, the resultant center of pressure of the combined forces can be allowed to pass just within the outer toe of the base of the section, leaving no factor of safety beyond that supplied by the unknown influence of cohesion and further designs based on a slight modification of this principle will be found in agreement with commonly received and established practice.

(6) Fig. 2 illustrates more fully the triangle of forces $\rho \phi \gamma$ with their angles of divergence. The resultant r will be seen forms an angle with the normal to $O \alpha$ of the assumed value of $\psi^1 \tan \psi^1$ being the coefficient of friction of earth against the wall. This force, which acts in favor of the wall, causing a downward deflection in the direction of r, is neglected by some theorists but without tangible reason. It is evident that friction must develop on this surface, as well as on the plane of rupture, on any movement of the wedge of earth $A O X$. Consequently it cannot be ignored. The value of ψ^1 is, however, not considered as equal to ϕ, in Chalmers' Graphical Determination of the Stresses in the Structures of Engineering, the value of ψ^1 is assessed at one half that of ϕ. This proportional value will be adopted.* As regards ϕ, a consensus of authorities place the slope of repose

* But see Editor's Notes at the end of this Chapter.—Ep
at $\frac{1}{2}$ to 1 which is what ordinary soil naturally assumes. Some clays however have a much flatter slope of repose as 2 or 3 to 1 in such cases however the backing should be formed of prepared material which will not have a flatter angle of repose than $\frac{1}{4}$ to 1. Sir Benjamin Baker in the paper on the pressure of earth on retaining walls above referred to assumes $\frac{1}{4}$ to 1 as the slope of repose although dealing with London clay with a natural angle of 3 to 1.

(7) The earth backing is thus theoretically considered as a fluid having the specific gravity of earth but subject to modifications by the influence of friction on the surfaces on which it slides. The reactions of the back of the wall and of the plane of rupture in accordance with the properties of fluids must be normal to those surfaces but the action of friction causes obliquity in the directions of q and of r from the lines normal to OA and $O\lambda$.

(8) In all subsequent investigations the value of ϕ will be assumed at $\frac{1}{4}$ to 1. With regard to ϕ the weight of earth will be taken as 1 cwt per cubic foot or specific gravity 18. Some clays weigh as much as 120 lbs or 125 lbs per cubic foot or have a specific gravity of 19 or 20 but they are exceptional and can be met by special design. In hot countries where alone irrigation is practised the heavy clays common in Europe which are due to glacial action are rarely met with. Most soils do not weigh over 100 lbs per cubic foot.

Position of the Plane of Rupture

(9) It has already been observed (vide par 2) that the position of $O\lambda$ is somewhere intermediate between OB and OA. By reference to Fig 2 it will be seen that if the plane of rupture be assumed to coincide with that of repose the triangle $AO\lambda$ will be coincident with AOB and consequently ϕ will be at a maximum value. The angle θ however disappears and with it r. On the other hand were $O\lambda$ coincident with OA ϕ would disappear. Some intermediate position of OX must be found which will satisfy the condition of giving a greater value to r than any other possible one. In works where this subject is treated by analytical methods a formula is given whereby the angle θ can be found by calculation but it is so involved as to be useless for practical purposes. In Chalmers work the problem is solved by graphical process but except in the case of a horizontal terrain line the system adopted is too abstruse and complicated to be of practical value though doubtless suitable for students as an exercise of ingenuity. The process adopted in this work for finding the correct value of θ where the terrain line is not horizontal is fundamental in method and as simple as possible. Various positions of the value of r deduced in each inclination giving the greatest value to r is adopted as the correct value of θ.

(10) When the terrain line AB is horizontal and the angle of friction is neglected $O\lambda$ will bisect the angle AOB. The proof of this can be found.
in my work on the subject. When the friction on AO is taken into account the direction of r will be more inclined and thus will tend to slightly modify the position of OY but to so small an extent that for all practical purposes it may be entirely neglected.

(11) In cases where the terrain line AB is inclined upwards or downwards as shown in Figs 3 and 4 the position of OY has to be found by a tentative process as exhibited below.

Fig 3 is a case with a terrain line inclined upwards at a slope of 2 to 1. On AB any number of points Y_1, Y_2 etc are taken these joined by the dotted lines with O form so many planes of rupture each having different values of θ with the angles $\angle OY_1 OB, \angle OY_2 OB$ etc. We have now to find which of these directions will ensure the greatest value of λ the resultant pressure on the wall. As the triangles AOY_1, AOY_2 etc have the common base AO their areas are directly proportional to their several sides AX_1, AX_2 etc consequently these sides can be taken as representative of their areas πr of ρ_1, ρ_2 etc the weights of the prisms held up by the wall.

To avoid constructing a separate figure the force polygon can be joined on to the diagram by assuming AX as the vertical load line. At the point A the direction of r is set off making an angle with ρ equal to on the figure in the same way at the points Y_1, Y_2 etc the angles θ_1, θ_2 which OY_1 and OY_2 make with OB are set off toward the line r. These lines which represent the oblique reactions of the planes of rupture cut r in several places. These several intercepts of the line above the point A give the value of r for each trial plane of rupture and that angle effecting the largest intercept is
DESIGN OF IRRIGATION WORKS

at \(\frac{1}{2} \) to \(1 \) which is what ordinary soil naturally assumes. Some clays, however, have a much flatter slope of repose, as 2 or 3 to 1. In such cases, however, the backing should be formed of prepared material, which will not have a flatter angle of repose than \(\frac{1}{2} \) to 1. Sir Benjamin Baker, in the paper on the pressure of earth on retaining walls above referred to, assumes \(\frac{1}{2} \) to 1 as the slope of repose, although dealing with London clay with a natural angle of 3 to 1.

(7) The earth backing is thus theoretically considered as a fluid, having the specific gravity of earth but subject to modifications by the influence of friction on the surfaces on which it slides. The reactions of the back of the wall and of the plane of rupture, in accordance with the properties of fluids, must be normal to those surfaces, but the action of friction causes obliquity in the directions of \(q \) and of \(r \) from the lines normal to \(OA \) and \(OX \).

(8) In all subsequent investigations the value of \(\phi \) will be assumed at \(\frac{1}{2} \) to \(1 \) \(\phi \) at 3 to 1. With regard to \(\rho \), the weight of earth will be taken as \(1 \) cwt per cubic foot or specific gravity 1.8. Some clays weigh as much as 120 lbs or 125 lbs per cubic foot, or have a specific gravity of 1.9 or 2.0, but they are exceptional and can be met by special design. In hot countries, where alone irrigation is practised the heavy clays common in Europe, which are due to glacial action are rarely met with. Most soils do not weigh over 100 lbs per cubic foot.

Position of the Plane of Rupture

(9) It has already been observed (vide par 2) that the position of \(OX \) is somewhere intermediate between \(OB \) and \(OA \). By reference to Fig. 2, it will be seen that if the plane of rupture be assumed to coincide with that of repose the triangle \(AOX \) will be coincident with \(AOB \), and consequently \(\rho \) will be at a maximum value. The angle \(\theta \), however, disappears, and with it \(r \). On the other hand, were \(OX \) coincident with \(OA \), \(\rho \) would disappear. Some intermediate position of \(OX \) must be found which will satisfy the condition of giving a greater value to \(r \) than any other possible one. In works where this subject is treated by analytical methods a formula is given whereby the angle \(\theta \) can be found by calculation, but it is so involved as to be useless for practical purposes. In Chalmers' work the problem is solved by graphical process, but except in the case of a horizontal terrain line, the system adopted is too abstruse and complicated to be of practical value, though doubtless suitable for students as an exercise of ingenuity. The process adopted in this work for finding the correct value of \(\theta \), where the terrain line is not horizontal is to neglect friction and as simple as possible. Various positions of \(OX \) are tentatively assumed, the value of \(r \) deduced in each case and the greatest value to \(r \) is adopted as the correct solution.

(10) When the terrain line \(A \) is neglected, \(OX \) will bisect the angle.
earth and water acting on the wall, as if composed of the former material.

The slight excess in the area of the superimposed parallelepiped AX^1, which is somewhat larger than the rectangle A^1X, is too trifling for consideration, though capable of exact adjustment by further lowering the line A^1X.

(14) Process of drawing resultant line of pressure to base of wall profile

Fig 6 represents a trapezoidal section of wall 30 feet high, 2 feet wide at crest, and 12 feet at base. The face is vertical. The object of drawing the resultant line of pressure through the base of the wall is that the position of the point where this intersects the base forms the criterion of the stability of the section adopted. If it falls at the outer toe, the section is of just sufficient statical stability, if outside, the wall will overturn. The further the point of intersection falls within the outer toe, the greater the stability. Excess, however, would lead to waste of material. As already noticed in par 5 the unknown force of cohesion forms a large but indefinite factor of safety. It is, however, deemed advisable to ensure a certain small additional precise factor by designing the section so that the resultant line of pressure will intersect the base within the outer toe at a distance having a certain arbitrary proportion to the width of base. This will obviate any remote possibility of crushing the material at the edge of the base, which would be liable to occur were the maximum point of pressure concentrated at this.

* This cannot be decided unless the stress diagram be drawn to show maximum pressure intensity at toe of wall — Ed
point This inset being a fraction of the base will ensure a uniform system of design applicable to all sections and one which is in agreement with practical examples of known stability the weight of these trapezoidal walls thus bearing a constant ratio to the base width \(b \) the top width being a fixed dimension.

This fraction will be fixed at one eighth the width of base and has been decided on with due regard to assimilation of design to the proportions of retaining walls such as are commonly followed in practice. The problem of design now consists in adjusting the base width of the sections so that the resultant line of pressure will cut the base at a point \(\frac{b}{8} \) within the toe. This can only be effected by a tentative process of trial and error. As the section is determined entirely by the base width, any alteration in the latter affects the back slope of the wall and with it the oblique direction of \(r \) which is at a fixed angle from the normal to the back. Furthermore the area of the triangle of earth pressure the position of \(OA \) and value of \(\theta \) are all modified by any alteration in the base width of the profile of the wall.

To express this in analytical terms would necessitate the use of formulas of so complicated a form as to prove too cumbersome by far for practical purposes and the time spent in working them out would greatly exceed that employed in making the graphical solution besides the increased liability to error.

(15) As already noted in par 8 the specific gravity of earth backing is taken as 1.8 for these investigations. With regard to the walls carefully built rubble masonry will weigh from 140 lbs to 145 lbs per cubic foot * e. have a specific gravity of 2.4. This value is adopted in Water Works Engineering * as applicable to masonry dams where it is stated that the specific gravity of the stone used with careful construction should in cases of walls subject to water pressure bring the weight of the built masonry to not less than 145 lbs per cubic foot.

For retaining walls of ordinary construction a specific gravity of 2.4 is deemed too high and in this work 2.1 will be adopted for earth retaining walls and 2.25 for stone dams and weirs.

Granite masonry has a specific gravity of 2.4 or even 3 or more with Portland cement mortar. Brickwork varies from 100 lbs to 125 lbs per cubic foot * e. from specific gravities 1.6 to 2.0. In these investigations 1.8 will be adopted as the specific gravity of brickwork. The following is a resume of the foregoing —

Earth Backing Specific Gravity	1.8
Brickwork Specific Gravity	1.7 to 1.8 in lime mortar
Ordinary Stone Masonry	2.1
Special	2.25
Granite	2.5 to 3 in cement
\(\phi \)	\(1.5 \) to 1
\(\phi \)	\(3 \) to 1

* Water Works Engneering by Toder and G. Glitmore
(16) To revert to Fig 6 OB is the plane of repose, set out at 1\(\frac{1}{2}\) to 1 from the base line 00. The terrain line 4X being horizontal the plane of rupture bisects the angle AOB, and \(\theta = \frac{AOB}{2}\) \(\text{The prism of earth AOX, which exerts active pressure on the wall will do so by sliding on its base OX. The resultant line of pressure of this weight will act through the centre of gravity of the triangle AOX, and a line shown dotted on figure drawn parallel to the base of the triangle AOX through G cuts the back of the wall AO at the point marked a.} \) \(\text{0a is clearly one-third of AO, and thus we see that whenever the apex of the triangle of earth pressure is coincident with the inner point of crest of wall the resultant earth pressure invariably acts at one-third the vertical height of wall above base or at \(\frac{H}{3}\). In Fig 5 the apex of the corresponding triangle is not at A but at \(\frac{1}{3}\) A higher up, consequently the centre of pressure will be at a greater height above the base.}\n
(17) Having found a the point of application of r its direction is found by drawing ab at right angles to AO and from it setting off r upwards at an inclination of \(\phi^1\) or 3 to 1 from the normal ab. The line r should be continued through the profile. \(\text{This force will now have to be combined with that consisting of the weight of the masonry acting through its centre of gravity.}\n
By far the easiest method of finding the centre of gravity of a trapezoidal figure is as follows — From A measure off AC = base OC and similarly from C, CD = crest AD join cd and also the points of bisection of AD and OC. The intersection of these lines is G the centre of gravity of the profile ADG. From this point G draw a vertical cutting r at the point f.

The directions of the two forces r and W are now connected on the profile and the next step is to find out their values.

Let \(\frac{H}{2}\) denote the vertical height of the wall \(\text{Then the weight of the prism AOX, taken as one unit wide, is } H \times \frac{AX}{2} \times \varepsilon \text{ w being the weight of a cubic foot of the earth backing.} \) \(\text{Similarly that of the wall will be } H \times W \times \varepsilon, W \text{ being the mean thickness of the wall.} \text{Let } \rho \text{ be the specific gravity of earth } \rho \text{ that of masonry then the weight of a cubic foot of water being } 62.3 \text{ lbs } w = \varepsilon \times 62.3 \text{ and } \varepsilon = \rho \times 62.3 \text{ Hence the two expressions which have to be graphically equated become}\n
\[
H \times \frac{AX}{2} \times \varepsilon \times 62.3 \\
H \times W \times \rho \times 62.3
\]

eliminating the common factors we have as representative of the loads on either side

\[
\text{Earth} = \frac{AX}{2} \times \varepsilon \\
\text{Masonry} = W\rho
\]
Reducing the earth expression to the base of the specific gravity of masonry, \(\varepsilon \), by dividing both expressions by \(\rho \), we have

\[
\text{Vertical earth pressure} = \frac{AX}{2} \times \varepsilon \rho
\]

\[
\text{Vertical wall pressure} = W
\]

(18) This arrangement for the simplification of expressions is commonly adopted in graphical calculations.

The force polygon is shown in Fig 6a. Here the vertical force is represented by \(ab = \frac{AX}{2} \times \varepsilon \rho \). To effect this fractional multiplication graphically, \(ac \) is drawn horizontally = \(\frac{AX}{2} \). On \(ab \) mark off on any scale, \(\varepsilon \) the specific gravity of earth and on \(ac, 2 \varepsilon \), that of masonry, join these points and through \(c \) draw \(cb \) parallel to the last line. Then by similarity of triangles, \(ab \) or \(\phi \) will = \(\frac{ac \times \varepsilon}{2} = \frac{AX}{2} \times \varepsilon \). From \(b \) set off \(bd \) inclined at the angle \(\theta \) from \(\phi \), and through \(a \) draw \(ad \) parallel to the line \(r \) in the profile Fig 6. The triangle \(abd \) will then represent the forces \(\phi, q \) and \(r \). Having now obtained \(r \) in quantity as well as direction, it has to be combined with the force \(W \). This can be best effected on the same diagram. The procedure is as follows — Draw \(de \) vertically = \(W, 1 \varepsilon = 7 \) ft and join \(ae \). The triangle \(ade \) will then be the force triangle required, \(ad \) being \(r \) and \(de \) \(W \), the resultant of these two forces \(R \) will be \(ae \), the third side of the triangle \(ade \), in direction and magnitude. \(R \) is then the resultant line of pressure on the base which is required. In Fig 6 from the point \(f \) draw \(R \) parallel to \(ae \) in Fig 6a. Cutting the base at the point \(h \).

(19) The distance of \(h \) from the outer toe \(C \) will be found to be close to \(1 \) foot \(6 \) inches * or \(1 \) \(\frac{1}{2} \) base \(CO \). When the wall is of brickwork of the specific gravity \(\varepsilon \) the same as that of the earth backing, the force \(\phi \) is drawn equal to \(\frac{AX}{2} \). This is shown in Fig 6b. The resultant \(R_1 \) reciprocal to that in Fig 6b is drawn as a dotted line on the profile Fig 6. Its incidence on the base \(CO \) is nearer the toe \(C \) than that of \(R \). To bring the incidence of \(R_1 \) back to the point \(h \), which latter is at \(b \) distance from \(C \), the base width will have to be increased by half a foot and be in terms of \(H, 4H + \frac{1}{2} \). instead of \(4H \), as it stands in the drawing.

* Actually 1 25 foot or \(b/10 \) — Ed

The Reciprocal Triangle of Earth Pressure

(20) Hitherto we have only been concerned with the point of intersection of all the forces engaged on the base line of the retaining wall. The position of which point demonstrates the stability of the section and which is
identical in result with the analytical system of taking moments about the outer toe, or some other fixed point in the base line.

This procedure is sufficient in most cases, as it can be safely assumed that if the wall at the weakest part, viz., the base, is in stable equilibrium, the upper part will be still more so. When, however, retaining walls are of exceptional height, or are subjected to abnormal conditions of pressure, or are of unusual section, it will become desirable that the line of pressure be traced right through the section of wall from crest to base, thus enabling the designer by inspection of the weak points to modify the profile as may be expedient.

(21) In order to be in a position to draw the line of pressure, the distribution of the earth pressure on the back of the wall has to be ascertained, the previous method only giving the point of application of the resultant on the base.

To effect this the triangle of earth pressure reciprocal to that of the earth pressing on the wall has to be drawn reduced to a masonry base, so that ordinates drawn parallel to the base of this triangle to any point on to the back of the wall will truly measure the intensity of pressure at such point.

In Fig 7 the triangle AOX is the area of earth backing whose weight presses on the wall. The pressure developed by this prism is nil at the...
crest A and is a maximum at the base, hence the form of the area of pressure will be that of a triangle having its apex at the crest A. The area of this triangle should equal the total earth pressure, and each ordinate drawn parallel to its base will measure the intensity of unit pressure at that point.

Now, the total earth pressure in terms of unit weight of masonry is, as we have already seen, rH, r, as in Fig 7a being the resultant of the earth pressure divided by H (the weight being unity), thus the area of the triangle must $= rH$, i.e., its mean width will be r and its base will measure $2r$. In Fig 7, if Oa is made $= 2r$ then the triangle AOa will be the reciprocal triangle of earth pressure, its area being rH. The base Oa being horizontal, the measure of the intensity of unit pressure at any point on the back of the wall AO will be the horizontal ordinate of the triangle AOa. The actual direction of the pressure however, is oblique, being inclined to the normal to the back AO.

(22) The procedure of drawing the line of pressure will be briefly described. The wall and triangle of pressure are divided into laminae of equal depth in this case three. Their common depth $\frac{H}{3}$ can then be eliminated from the graphical calculation, the weights of the laminae can then be represented in the force diagram 7b by their respective mean widths.

Thus in Fig 7b the load line ab or W is composed of the three half widths of the wall 1, 2 and 3. In the same way ac or r is composed of the three half widths, $1', 2'$ and $3'$, of the laminae of the triangle of pressure. The incidences of r', r'' and r''' on the back of the wall are at the intersection
of lines drawn through the CG's of the laminas. From these points the directions of the forces are inclined parallel to r in Figs 7a and 7b. From the intersection of r with z in Fig 7, R is drawn parallel to its reciprocal R in 7b, the point where this cuts the end of the base of the lamina z is a point on the line of pressure. From the intersection of R continued, with 2^1, a line is drawn back parallel to its reciprocal in Fig 7b, the resultant of the three forces z, 1^1 and 2^1. Again from its intersection with the force 2 the line R^1 is drawn to meet the inclined force 3^1 parallel to its reciprocal R^1 in the force diagram, this intersects the base of lamina z, giving a second point in the line of pressure and terminates as before, at its junction with the inclined force 3^1. The procedure as above described with regard to the reverse line gives the starting point of the final resultant R^2 which intersects the base of the wall. This latter point is clearly identical with that obtained by the simpler procedure formerly given.

(23) We will now proceed to show the method of obtaining the incidence of the resultant line of pressure on the base of a trapezoidal wall in cases where the terrain line is not horizontal and also where it is surcharged with a weight above the level of the wall crest.

Fig 8 represents a case with the terrain inclined upwards. First the point X, or the intersection of the line of rupture with the terrain, is obtained by the means described in par 11. The area of the prism of earth pressing on the rear of the wall AOX cannot be represented as was done hitherto by $\frac{AX}{2} \times H$, but if the line XX^1 be drawn parallel to the back of the wall till it intersects the horizontal line AX^2 and the point X^2 joined with O, then the triangle AOX^1 is evidently equal to AOX and its area is equal to $AX^1 \times H$.

The centre of gravity of the prism is evidently on a line drawn parallel to the base OX consequently the incidence of the inclined force r on the back of the wall will be at one third of H. The same is the case with any triangle having its apex at the point A. The procedure of finding r is identical with that already described, p being made equal to $\frac{AX^1}{2} \times \frac{e}{p'}$ and q set off at the angle θ from its extremity b, which intercepts the inclined line r drawn from the origin a.

(24) In Fig 9 we have a similar case but with the terrain line inclined downward. The procedure is identical with that in the last case.

(25) Fig 10 is a replica of Fig 5, in which the terrain line is loaded with water. As already noticed in par 13 the prism of earth acting on the wall...
is the triangle A^1OX^1. Consequently in the force polygon Fig. 10a p is made either by graphical or arithmetical process equal to $\frac{A^1X^1}{2} \times \frac{e}{p} \times \frac{H^1}{H}$.

The last fraction enables H to be eliminated as a common factor. By setting off q at the angle θ from the base of the load line the value of r is obtained, as also the base Oa of the triangle of pressure AOa which is $2r$. The earth pressure is represented not by the triangle A^1Oa but by the hatched trapezum AOa consequently r, in Fig. 10, is not representative of the mean pressure but r^1 the half-width of the trapezum which is greater than r does so. Hence in Fig. 10a r^1 has to be measured off from the point of origin a to d and the vertical W or de is drawn through this point d equal to the half-width of the trapezoidal wall ae is then the direction of R. In the profile Fig. 10 the inclined force r^1 cuts the back of the wall at the inter-

Figs 10 to 10a

section of a horizontal through the centre of gravity of the trapezium AOa, not at that of the triangle A^1Oa.

(26) The consideration of further abnormal conditions to which retaining walls are subject will now be deferred until the principles of design are worked out in regard to trapezoidal walls of various heights and face batters under ordinary conditions of earth pressure. For this purpose Figs. 11 to 15 have been prepared being a series of diagrams of sections of equal strength but of varying face batters placed side by side for purposes of comparison. Inspection of these diagrams will at once demonstrate to the eye the influence exerted in the economical design of the sections by face batter, the diagrams also furnishing reliable types of sections for practical use based on which formulas easy of application can be deduced.

In all cases the specific gravity of the material of the wall is taken as 2.1, that of the earth backing as 1.8, the top width at crest is a fixed dimension of 2 feet, and each section is so designed that the centre of pressure falls close to the outer toe at a distance of one eighth of the base from that point. As noted in par. 10 if the wall is of brickwork with a specific gravity the same
as the earth backing, the incidence of the resultant on the base will be beyond $\frac{b}{8}$ from the toe at a point about $\frac{b}{10}$ * from the same point

Thus brick walls built of these proportions will be safe though of less

* But see foot note to par (19) The fraction will be less than $b/10$ in this case — Ed
stability or if the same statical condition as was deemed requisite in the case of stone walls be insisted on the base should be increased from 6 inches in the higher to 4 inches in the lower sections right through.

Table I

<table>
<thead>
<tr>
<th>Face</th>
<th>H</th>
<th>Base</th>
<th>Area square feet</th>
<th>H/W</th>
<th>Height (f) when back becomes vertical</th>
<th>Face</th>
<th>H</th>
<th>Base</th>
<th>Area square feet</th>
<th>H/W</th>
<th>Height (H) when back becomes vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feat</td>
<td>30</td>
<td>$4H$</td>
<td>210</td>
<td>$\frac{1}{43}$</td>
<td>5</td>
<td>30</td>
<td>$4H-1$</td>
<td>195</td>
<td>$\frac{1}{46}$</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>25</td>
<td>$4H$</td>
<td>150</td>
<td>$\frac{1}{42}$</td>
<td>$137\frac{1}{4}$</td>
<td>20</td>
<td>$4H-1$</td>
<td>90</td>
<td>$\frac{1}{44}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>$4H$</td>
<td>60</td>
<td>$\frac{1}{38}$</td>
<td>$52\frac{1}{4}$</td>
<td>10</td>
<td>$4H-1$</td>
<td>25</td>
<td>$\frac{1}{43}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Batter 1 in 8	$4H-\frac{1}{2}$	187	$\frac{1}{48}$	128	Batter 1 in 6	$4H-\frac{1}{2}$	172$\frac{1}{4}$	$\frac{1}{52}$	173
Batter 1 in 8	$4H-\frac{1}{4}$	131	$\frac{1}{48}$		Batter 1 in 6	$4H-\frac{1}{2}$	119	$\frac{1}{52}$	
Batter 1 in 8	$4H-\frac{1}{2}$	85	$\frac{1}{47}$		Batter 1 in 6	$4H-\frac{1}{2}$	75	$\frac{1}{52}$	
Batter 1 in 8	$4H-\frac{1}{2}$	49	$\frac{1}{46}$		Batter 1 in 6	$4H-2$	43	$\frac{1}{54}$	
Batter 1 in 8	$4H-\frac{1}{2}$	22$\frac{1}{4}$	$\frac{1}{44}$		Batter 1 in 6	$4H-2$	20	$\frac{1}{5}$	

Note: $H = $ vertical height $W = $ mean width of walls (both in feet) $p = 2$ r

Reference to the diagram series will show that with the change of face batter the consequent gradual reduction of the base width causes the back slope to become steeper till at last in Fig 15 it vanishes and the back slope becomes inward in sense. This diminishing of the base is so regular and so clearly governed by the height that the base width can well be expressed in
terms of H, and rules can be framed giving the required base width of any wall as a fraction of its height. In this the base for a vertically faced wall, as in Fig. 11, will be used as a standard, the whole of that series working out to $4H$. The base width of Fig. 12 works out to $4H - 1$, of Fig. 13 to $4H - 1\frac{1}{2}$ of Fig. 14 to $4H - 2\frac{1}{2}$ and of Fig. 15 to $4H - 4$.

Sections have been drawn out for every depth from 30 to 10 feet for each face slope, though not given here, and the tabular statement on p. 16 is the result.

(27) In practice many reversion walls as wings of bridges have a crest sloping down at $1\frac{1}{2}$ to 2 to 1 in uniformity with the side slope of an embankment which they support. If designed of equal strength throughout, in accordance with the base widths in the Table, the end portion of the wall in some cases would have an inward and the upper an outward back slope. Although it is possible to build the wall in this way the outer slope gradually changing from inward slope to vertical and again outward yet it would be a somewhat awkward construction, and for the sake of simplicity it would be as well to continue the wall as soon as the outer slope is merged into the vertical as one with a vertical back. This will cause the lower portion of the wall to have an excess of strength and material. This fact would militate against the use of excessive batter as 1 in 4 or even 1 in 6 for crest sloping walls as the saving effected in the higher portion would be discounted by the excess in the lower. In the tabular statement given above the height at which the back slope disappears and the back becomes vertical is noted in the last column of the Table.

(28) The great economical advantage of face batter to retaining walls is clearly proved by the sections given and by the Table. For instance the vertically faced wall in Fig. 11 has a sectional area of 150 square feet and a proportion of $\frac{IV}{H}$ or $\frac{\text{mean width}}{\text{height}}$ of $\frac{1}{4}$ $\frac{2}{2}$. Whereas in Fig. 15 of equal strength the area is 100 square feet and the fraction $\frac{IV}{H}$ is $\frac{1}{6}$. In this case the back of the wall has an inward slope thus approximating to a pitched slope.

(29) Brunel's curved walls had a value of $\frac{IV}{H}$ of nearly one seventh and leaned over to that extent that the centre of gravity of the wall fell outside the heel of the base. A specimen of the section of one of these retaining walls is given in Fig. 16.

For the graphical calculation the back of the wall is considered as consisting of two planes $A101$ and $O1O$ $O1$ being at half the height or 20 feet above the base. As these portions of the back have different inclinations to the vertical the directions of their several planes of rupture and values of θ and r will also vary. Thus a separate graphical calculation will have to be made for each of the portions viz. the whole AD and the part $A101$.

The lower portion of the back $OO1$ is continued up to meet the terrain line.
at A. The planes of repose OB and $O'B'$ are then set out at r_1 to r with the horizontals from O and O', and the planes of rupture OX and $O'R'$ are found by bisecting the angles AOB and $A'O'B'$. The angles θ and θ' are obtained by this construction. The area of earth pressing on the whole wall is the four-sided figure $A'O'OX$, or the triangle $AOX +$ the triangle $A'O'X'$. If the apex A be moved to A^2, so that $AA^2 = AA^1 \times \frac{H_1}{H}$, then the enlarged triangle A^2OX will equal the combined area of the two triangles just noted. H_1 being $= \frac{H}{2}$, the position of A^2 will be at the bisection of AA^1. Hence for

![Diagram](image)

Figs 16 16a, 16b

purposes of measuring the area of the earth triangle, A^2X will be considered as the base in lieu of AX.

With regard to the upper portion, the triangle $1^1O^1X^2$ represents the earth prism pressing on the upper half back A^1O^1, A^1X^1 will then measure the comparative weight of this part.

(30) To find the values of r for each division the force triangle 161 is now constructed. The vertical load line is made $= \frac{A^2X}{2}$, for the whole depth of wall, and on the same line the value of p for the upper half, viz, $\frac{A^1X^1}{2}$, is marked off. From the extremity of the load line and also from the higher point in in the angles θ and θ' are set off, intercepting r and r' on the two
lines representing the directions of these forces, which lines are inclined at angle ϕ, above the normal to the planes AO and A^1O^1 respectively.

The next step is to construct the reciprocal triangles of earth pressure. With regard to the upper portion, $2r^1$, drawn horizontally from the point O^1, will form the base of the triangle, its apex being at A^1 (vide par. 21).

The lower base could in similar manner be measured $= 2r$ from the point O, the apex of this larger triangle of pressure being at A^2. It will be more convenient, however, to make the inner side of this triangle coincide with that of the upper, viz., with the line A^1O^1 and A^2O^1 produced. The base $2r$ will then be measured from the intersection of A^1O^1 produced with the base line. It is clear that the area of the trapezium below O^1 will be the same, whatever inclination is given to its side, as all will have the same base and lie between the same parallels.

The procedure now closely follows that already described in the case of Fig. 7. First the wall is divided into parts of equal height, in this case 1, 2, 3 and 4. The triangle and trapezium of earth pressure forming the corresponding divisions of the wall and of the earth pressure are next found, and vertical lines drawn through the former and horizontal lines, i.e., parallel to their bases through the latter. Through the points where these horizontal lines cut the back of the wall, the four feathered lines representing the directions of r and r^1 are drawn.

(31) We are now in a position to construct the Haesslers force and ray polygon, which, owing to the varied inclinations of r, presents some difference to that illustrated already in Fig. 7b. First, from the nucleus O (Fig. 16b), the first inclined force r^1 is measured in its proper direction and equal in length to the half width of the triangle r^1 on Fig. 16. From its extremity, the vertical force r, is set out equal in length to the half width of division 1 of the wall section. In the same manner the other forces $2r^1, 2r^2, 3r^1, 3r^2$ and $4r^1, 4r^2$ are set out. The resultants, R^1, R^2, R^3 and R^4, are clearly combinations of $r^1, r, r^1, r^2, 2r^2, 2r^1, 2r^2, 2r^1$ and so on, and the dotted rays drawn from the outer corners are the resultants of the odd numbers $r^1, r^2, 1r^1, 1r^2, 1r^2, 1r^1, 1r^2, 2r^2$, etc. The drawing of the reciprocals on the wall section is identical with that already described with reference to Fig. 7 and need not be repeated. The intersections of R^1, R^2, R^3 and R^4, with the base lines of the divisions 1, 2, 3 and 4, give four points on the line of pressure. The relative position of these proves the stability of the wall. The weakest point is at the base, and it is evident that the stability of the wall would be considerably improved by the addition of an off set from the face near the lower end.

(32) The centre of gravity of the whole wall falls without the inner toe. It is not shown in Fig. 16. Thus without the earth backing the wall would fall backwards. This was provided for during construction by tightly packing the back of the wall with rammed earth as the work proceeded. Several walls of similar light pattern were constructed by Brunel on the Great Western Railway.

A curved face batter is very suitable for walls 30, or over 30, feet in height.
as it corresponds more closely with the line of pressure and results in a more economical distribution of material. For irrigation works, however, this section is not very suitable except in the case of lock walls, which really belong to navigation canals.

(33) Retaining walls, which overfall to such an extent as to be supported entirely by the earth, instead of vice versa, are termed pitched or riprapped slopes. Figs. 17, 18 and 19 are examples in question.

In Fig. 17 the pitched slope is \(\frac{1}{3} \) to 1, and the diagram exhibits tentative methods of ascertaining what thickness of pitching or riprap will be
required. The procedure is identical with those already described for obtaining the centre of pressure on the base of retaining walls.

Trial is made of three thicknesses: 2 feet, 1 1/2 feet, and 1 foot.

In the force polygon, Fig. 17a, has therefore three different values and consequently, R has likewise three different directions and values. Of the three R^2 intersects the base consequently the intermediate thickness of 1 1/2 feet is sufficient for purposes of stability.

In Fig. 18, the slope is likewise 1 to 1, but φ, the angle of repose, is given an inclination of 2 to 1. In this example, two trial mean thicknesses of 2 1/2 and 2 1/2 feet are adopted, the pitching being made 6 inches thicker at the base than at the surface. Of the two thicknesses, the greater, or R^2, will be the correct one to adopt.

In Fig. 19, the slope is 1 to 1 with the angle of repose 2 to 1, showing that a 9-inch thickness of pitching is more than sufficient.

These examples prove the economy in the substitution of a masonry pitched slope for a retaining wall. A river weir designed on this principle is illustrated in Fig. 24.

(34) Varieties of solid retaining walls used in irrigation works may be classified as below as regards section:

A. walls with horizontal crests with earth pressure to base
B. walls with sloping crests with earth pressure to base
C. walls with earth pressure for a fraction of height above foundations
D. walls in parallel pairs termed land wings or straight returns
E. single land wings or straight return stop walls with earth pressure equal on either side
F. surcharged walls
G. walls with unequal earth pressure on both sides
H. weir walls with earth backing to near crest which is overlaid by water
as it corresponds more closely with the line of pressure and results in a more economical distribution of material. For irrigation works, however, this section is not very suitable except in the case of lock walls, which really belong to navigation canals.

(33) Retaining walls, which overfall to such an extent as to be supported entirely by the earth, instead of vice versa, are termed pitched or riprapped slopes. Figs 17, 18 and 19 are examples in question.

In Fig 17 the pitched slope is $\frac{1}{4}$ to 1, and the diagram exhibits tentative methods of ascertaining what thickness of pitching or riprap will be
ordinarily built are not so economical as the sloping crest flank wall illustrated in Figs 20b to 23b. Further in this latter disposition the flank walls form a guide for the water's function which is valuable in case of increased current as occurs below a fall.

(36) Fig 20c, 21c and 23c represent a type of splayed wing now in much favour for various reasons for use up stream generally in combination with (b) down stream.

This wall is naturally more expensive than a splayed and crest sloped wall but it has the advantage of great flank protection against soakage or percolation under a head of water and in addition by causing the widening of the embankment enables the abutment to be made much shorter or if the latter is already wide carrying arches of a bridge it forms a level space close to the work and clear of the roadway which space is found useful for many purposes. It further guides the current into the opening which is always less than the water surface of the channel.

With regard to (b) in plan and elevation in Fig 20 these are views of a sloping wing with crest parallel to the axis of the work the base or spring line of the batter being splayed outward at an inclination to the crest of ratio of batter × ratio of fall of crest. In this sketch the face batter being 1 in 10 and slope of crest 1:4 to 1 the divergence of the base line from axis will be 1 in 19. The wing is provided with an end return 4 feet high whose length should equal its height × ratio of slope of bank i.e. $4 \times \frac{1}{4} = 6$ feet. This return wall is surcharged but it will be strong enough in section if built of the same thickness as the end of wing abutting on to it and given a face batter.

The advantage of a water wing of this description is obvious. It guides the water issuing through the opening in a straight course down the channel and also protects the banks down stream from contact with water except possibly at its lower extremity which is removed far from the main work.

Where as often the case a masonry floor extends down stream beyond the abutment flank wings of this description are a necessity or else with pitched slope a dwarf wing can be substituted as shown in Fig 24a.

(37) In Fig 21 a similar disposition of walls is exhibited as the b and c series in the last figure. In this case the floor is not level but a drop of 4½ feet occurs in the canal bed. It will be seen that the abutments are very narrow only sufficiently wide to cover the end of the cross drop wall.
a direct return could not be adopted or if so the abutment would have to be lengthened to contain the proper top width of bank approach. The efficient protection of the work from outflanking and the provision of the necessary width of bank are clearly effected in a satisfactory and economical manner by the splayed wall (c) (termed flaring wings in America).

Down stream the sloping crested water wings (b) display a slight difference in the way the batter is arranged. The base lines are parallel with the axis of the work consequently the crest lines diverge inwards. This looks somewhat awkward on elevation, but there are cases where even a small outward splay of the water wings would be deemed objectionable if being essential that the current be guided in an absolutely axial direction.

(88) Fig 22 illustrates the case of a tank fall built in a depression which has the surface of ground at about floor level. In such cases the splayed wings up stream are not suitable, being necessarily of heavy section and the connection with the tank embankment which in this case has a flat inner slope of 3 to 1 and runs at right angles to the axis of the work is rather awkward. An abutment of width equal to that of the embankment combined with splayed sloping wings as illustrated is about the best arrangement. In this case the downstream wings (b) are shown set back the out lining of the abutment being modified by having the corner bevelled off to prevent sharp corners and consequent eddies in the current. The dog legged pattern down stream wings shown in the next figure is a still better type.

The water wings (a) are both shown without returns running right down to the toe of the embankment on either side. They are sometimes constructed splayed as far as end of downstream floor and thence continued parallel to axis or else curved as railway under bridge wings the latter arrangement coinciding with the old Madras practice. The curved walls are however rightly tabooed in modern works as being conducive to pooling, i.e., a destructive rotary movement in the water which has to be guarded against.
Fig 23 is a modification of the conditions prevailing in the last example, showing the level of natural ground as 5 feet higher, the down-stream channel being in cutting. In cases such as this the splayed wings (c) can be employed up-stream with advantage, the length of abutment being only just sufficient to contain the end of the weir wall and the splayed returns arranged so as to afford the necessary width to the embankment.

The down-stream wings are of the dog-legged pattern, the abutments being also battered as well as the wings. This arrangement which has been adopted in the designs for canal falls given in Chap IX, is probably the best for this purpose.

Fig 24 contains elevation plan and section of a weir across a river which was constructed by the author in Burma. This illustrates class E. There being no wing walls proper, the throw back of end of embankment is effected by continuing the weir in either direction with a raised crest, the single flank walls thus answering the purpose of the double land wings. In this case the flank continuations were stepped up in foundation, and, owing to the water pressure to which they are subject, were carried on of the same section as the weir proper. A photograph of this work is shown in Chap IX.

The banks below this weir were pitched with stone, and the floor was formed of cribbed stone planked over and further protected by a subsidiary.
crib weir of loose stone, so as to form a water cushion. This style of construction was necessitated by circumstances, and can hardly be deemed otherwise than a temporary arrangement, although it has lasted some years. The half section marked 24a shows the probable eventual substitution of a masonry floor flanked by dwarf walls and stone pitching laid in mortar. A similar design for a canal fall is exhibited in Fig. 4, Chap. IX.

Having thus touched upon the subject of the disposition of retaining walls as are commonly used on canal works on plan and elevation, it is now proposed to continue the investigations of walls under abnormal conditions of earth pressure.

(41) Fig. 25 represents the section of a pair of land or direct return wings, such as are commonly employed in railway over bridges. It will be seen that OX the plane of rupture, clears the opposite wall, and consequently the earth pressure on AO is identical with that which would take place were the opposite wall non-existent. This would apply equally to either wall, and so, notwithstanding the reduced width of the earth retained, no diminution of the section of the walls is admissible. This fact causes this type of wall, if of any considerable height, to become an expensive construction, and so it is superseded where practicable, as already noted, by sloping wing walls. Owing, however, to the small space between the return wings, which seldom exceeds 20 feet, all undue earth pressure can be neutralised by the simple device of connecting the walls together with iron tie rods. If this is done, a very light section of wall only need be provided, and thus equipped, the land wings can compete successfully as regards economy of section with the other types.
(42) In Fig 25 the walls are shown of reduced section the face batter being 1 in 10 with back vertical. In Fig 251 the usual triangles of forces abc and cda are constructed, giving the values of r and R. The reciprocal of the latter resultant transferred to the section falls well beyond the outer toe of base. In designing the section of the tie-rods required, credit should be given to the wall for the proportion of the horizontal component of R absorbed by it, the balance being provided for by the tension in the tie rods. A simple graphical process will solve the point. According to the rules adopted for the design of retaining walls, the resultant R should cut the base one-eighth of its width recessed within the toe. If this proportion be set off on the section, and a line R_1 drawn from this point to the intersection of the feathered arrow r with the vertical through the centre of gravity of the section, R_1 will then represent the proper inclination of the modified resultant. Now on Fig 25a draw a line dg parallel to R_1 from the extremity of W, intersecting r at the point g. The intercept eg then represents the proportion of r which is absorbed by the wall, and the remaining ga that which has to be neutralised by the tension of the tie-rods. As, however, the tension is horizontal, the horizontal equivalent of this inclined force need only be considered, gh or r_1, drawn horizontally, will then represent this force.

Reverting to Fig 25, with a value of $H_1 = 15$ feet, the line of pressure will fall at about the required distance within the toe of that base, so that above this point there is no necessity for extraneous assistance. Below, however, the line of pressure will trend towards the face, eventually falling outside altogether, as is shown by a final resultant R. The reciprocal triangle of horizontal earth pressure, reduced to the corresponding area of masonry, will be a triangle H_1OO, having its apex at H_1, 10 feet below crest, and the width of its base being marked off $= 2r_1$ on Fig 25a.

(43) The total horizontal stress to be carried by the ties per unit length will be the area of the triangle $H_1OO \times 62.3 \times \rho$, but as it is proposed to place the ties 5 feet apart, the stress to be provided for will be the above
expression multiplied by 5, or \(\frac{3.8}{2} \times 15 \times 2 \times 0.28 \times 5 \) tons = 84 tons

The quantity 0.28 is the weight of a cubic foot of water expressed in fractions of a ton, as 0.2 is the weight in lbs.

Two tie-rods will be required, the lower one will be placed at the centre of gravity of the pressure triangle, i.e., 5 feet above the base of the walls. This tie will neutralise the whole of the horizontal stress, viz., 84 tons, but another will be required at a higher level to counteract the overturning movement above the 5 feet level, as the wall might break off here, and fail by revolving on its outer toe. The area of that portion of the triangle lying above the lower tie level is one half of the whole, of this one-third will be transmitted to the apex, two thirds to the base. Hence the upper tie will carry one-sixth of the whole, i.e., 14 tons, and the lower the remaining five-sixths or 7 tons.

Taking 5 tons as the safe tensile strength of iron, the upper tie rod should have a sectional area of 3 square inches and the lower 1.4 square inches. One \(\frac{3}{8} \) inch diameter rod would answer for the upper and \(\frac{3}{4} \) inch for the lower, placed at 5 feet intervals.

(44) The reduced area of land wings is 82\(\frac{1}{2} \) square feet, as against 137\(\frac{1}{2} \) of the normal section (vide Table I.), and \(\frac{W}{H} \) is one-thirteenth only. This shows the great economy effected by the introduction of cross ties, the cost of which is trifling. The ties should be provided with large plate washers, and have a head at one end and screw nut at the other. The washers need not appear outside the wall, being placed in a recess near the face, which can be closed up when the final tightening has taken place.

The reduction in section rendered possible by this arrangement leads to the more extended use of this description of wall, particularly in the case of masonry pitched slopes being substituted for water wings, a style of construction used for river works, but which could be well adopted for canal falls or other cross canal works.

(45) In canal works in which a drop exists in the bed, it is a common practice to take the foundations of the up-stream wings down to the same level as those situated below the fall. The object of this arrangement is to obviate any possibility of saturation of the bank and percolation of water through the flank of the work. In Figs. 21 and 23 this is shown in the splayed up-stream returns (c) common to both plans. As canal falls are located so as to be in moderate cutting, the lower portion of the splayed walls is subjected to no earth pressure below the level of the bed of the upper reach, and reinforced concrete sheet piling could be adopted below this level instead of deepening the wall foundation.

These walls, then belong to class C, i.e., walls subjected to earth pressure for only a portion of their depth. As misapprehension undoubtedly exists regarding the action of forces in such cases, as is clear from many existing examples, it will be well to devote more than usual attention to the design of walls under similar conditions.
(46) Fig 26 illustrates the typical case of a vertical wall 30 feet high, the lower 10 of which is sunk in a trench in the solid ground and can consequently be safely considered as free from earth pressure below this level. The base width at O is made \(4H\), in accordance with the tabular formula, and the foundations are carried down vertically. The resultant of the upper portion \(R\) cuts its base at the proper point, but the final resultant \(R^1\) falls without the base of the whole wall.

(47) Fig 27 represents exactly similar conditions, but in this instance, the wall face being battered at 1 in 8, the base width is \(4H - 1\frac{3}{4}\), and below the level \(H^1\) the back is carried down vertically, while the face batter continues. In this case \(R^1\), the final resultant, cuts the base of the whole
wall within the outer toe, proving the stability of the section though it would be improved by still further widening the base, giving an increased batter below H^1, as is shown by the dotted line.

The area of the wall in Fig. 26 is 180 square feet, that in Fig. 27 is 156 square feet, the former is unstable and the lesser section in stable equilibrium. If the base of Fig. 26 were widened to bring R^1 within the toe at the proper place, the discrepancy of areas would be still further intensified in favour of the lighter section.

(48) As illustration of the too common neglect of this point, a few examples of actual sections will now be given and analysed.

Fig. 28 represents the section of a retaining wall on an existing canal fall with vertical face and sloping stepped back, which latter has been converted for simplicity sake into an equivalent batter. The wall is of brickwork and has been credited in the graphical calculation with the usual specific gravity of 1.8, that of the earth being taken at the same value. It will be noticed that the final resultant R^2 falls just without the outer toe of the base. The wall should therefore have a further widening of the base in front and corresponding reduction behind. The front addition would have to be about double that lopped off the back, as the latter operation would tend to throw the centre of gravity forward and this tendency would be further accentuated by the addition made in front.

(49) Now, supposing the wall reversed in section, i.e., keeping to the same dimensions. Let the earth pressure be on the vertical side. The effect is duly worked out in Fig. 28b, and R^3 is the final resultant. This, it will be seen, cuts the base 2 feet within the outer toe. The great effect of the reversal of the section is plainly manifest. Not only is the shape of the section thus reversed more suitable to sustain the thrust of the earth, but the area of the triangle of earth pressing on the wall is also much reduced. The greater the back slope, the larger is also AX and r. This is

* It may be noted however that the bearing capacity of foundation soil increases at the rate of about 1 ton per square foot for each foot of depth. — FD
somewhat discounted by the greater inclination of \(r \) to the horizontal when the back is inclined. This inclination is the graphical allowance for the weight of earth supported on the back slope of the wall.

With a vertical back, \(r \) is less than with an inclined back, but the great difference in the two values of \(r^1 \) and \(r^2 \) the horizontal component is due to the angle \(\theta \) which is at a minimum with a vertical back.

(50) Thus we see that a vertically backed wall is the most economical the batter being all thrown out on the front. It is only surpassed when the back as in the case of Fig 12 has an inward deflection. Exactly the same as will be seen later applies to dams subject to water pressure, the vertical backed wall being the most economical design.

(53) As already observed, it is a common practice peculiar to irrigation works to take the foundations of the upstream wings in case of a drop in canal bed right down to the lower level; consequently walls above the drop wall or weir are not subjected to earth pressure below the level of the canal upper bed.

Fig 31 represents a case in point and is a section of the splay upstream wall (c) shown in Fig 21. That figure represents a canal notch fall.

(54) One further problem is required to be solved before closing the subject of the sections of retaining walls, and that is the case where earth pressure exists on both sides of a wall acting in opposition. Viz class G. The method of combining these forces with the weight of the wall is illustrated in Fig 32.

The profile represents a 20 foot wall with earth pressure up to crest at the back, while part of the face is covered by a falling slope. This case is identical with that prevailing in connection with land wings at the ends of which the earth slope on the face reaches up to the outer crest and pivoting round on this point forms a half cone pressing on the face of either land wing, thus forming in elevation a slope against the face.

In Fig 32a, \(a b c d \) forms the usual combination of force triangles closing in \(R \). We have now to combine \(R \) with \(r^1 \) the inclined force acting in the opposite direction. This combination can be effected on the same figure by continuing the load line \(e d \) so that \(d e \) equals the relative area of earth weight.
which acts on the face of the wall. This will be \(\frac{A1X1}{2} \times \frac{H1}{H} \times \frac{e}{p} \). Then from the extremity \(e \) the \(\theta \) angle is set off, intersecting the inclined line \(r1 \) drawn through \(d \) at the point \(f \). The latter, joined with the starting point \(a \), gives the direction and comparative value of \(R1 \), the final resultant, \(e \) the resultant of \(r1 \) and \(R \). In Fig 32 \(R \) is drawn as usual from the intersection of \(r \) and \(G \) till it meets the line \(r1 \). This last point is the starting point for the final resultant \(R1 \), which is drawn through the base Fig 2.

When the earth pressing on the wall has a horizontal terrain as is the case in many direct return wings, the procedure is the same except that \(O1X1 \) bisects the angle \(A1O1B1 \).

Sloping Wings on Plan and Elevation

(57) The author is strongly in favour of the adoption of inclined backs for retaining walls instead of vertical stepped backs. In the former case the earth backing on settlement closes firmly against the inclined surface of the wall whereas with stepped backs the settlement is necessarily uneven and hollow spaces are certain to be formed; this has been noticed in actual cases, deep holes having been found adjoining the wall, the bank in settling having evidently cut itself clear * of the offsets of the back, leaving spaces down which the water finds its way, causing further settlement and disintegration.

The advocates of stepped backs for retaining walls allege that the system possesses the following advantages firstly, of increasing the friction of the earth against the wall thus adding to its stability, and secondly of affording a more solid support to the superincumbent earth backing which can thus be credited to the wall as an increment to its weight. Both these assumptions are questionable. The unequal settlement which is sure to occur with stepped backs to the wall must tend to decrease instead of increase the coefficient of friction. As instead of the whole of both surfaces being in close contact, they will be so only at intervals, the second consideration is not based on scientific grounds. The battered back, whether in steps or in one plain surface performs identically the same statical function viz its resistance to external forces must be normal to its surface. Whether this surface is composed of several horizontal and vertical portions or is in one plane its reflex action is the same as the vertical and horizontal forces if resolved are identical in direction with the force of resistance normal to the plane surface. The weight of earth supported is duly credited to the wall by the normal inclination of the force \(r \) to the bank which deflects the direction of this force downwards. With a wholly vertical back the direction of \(r \) would be horizontal, if the friction of the two surfaces were neglected. In such cases no earth rests on any part † of the wall. Thus it is clear that the stepped back possesses no

* It seems reasonable to suppose that in such cases the earth has no decided tendency to press against the wall which need not offer ground for complaint. The filling in of the holes is merely a matter of maintenance and repairs — Ed

† This seems too visual to the earth as overhanging the wall without touching in which case the retaining wall would seem to be superfluous except for appearances — Ed
advantages whatever over the plane batter, while it is undoubtedly more troublesome to design and to build

The sectional area of retaining walls can be largely reduced if the panel counterfort type of reinforced concrete is adopted, and economy in cost will also result provided the labour conditions and absence of local supplies of lime and material render the use of Portland cement necessary and desirable. Where, however, such abnormal conditions do not obtain, the adoption of a lighter section composed of the more expensive material will not present any advantage in point either of cost or efficiency. An example of R C retaining walls is given in Chap. IX.

Editor’s Notes

(A) "..." relieved on the

(1) The wedge theory of Coulomb, dating from the year 1780, as modified, or improved, by later investigators, and

(2) The theory of conjugate stresses in a solid under pressure, as enunciated by Rankine in the year 1852.

Our author has adopted the wedge theory, as expounded by James Chalmers, C E, in the year 1880. The graphic processes employed by Chalmers are lucid and, in the main, excellent, but in one material respect they seem to be in error. That is where he assigned, to the angle of friction between the earth and the back of the wall, a value equal to only half the angle of repose of the earth itself. Thus, according to him, \(
\phi' = \frac{\phi}{2} \), but he gave no reason for this decision.

According to Boussinesq, a Belgian professor, and perhaps the most painstaking and mathematically profuse of all investigators of this subject, the precise value of \(\phi' \) is indeterminate, but it lies between \(\phi \) and \(\phi'' \), where \(\sin \phi'' = \frac{1}{2} \sin \phi (\sin \phi + \sqrt{\phi^2 + \sin^2 \phi}) \). If we assume that \(\phi' = \frac{1}{2} (\phi + \phi'') \) then if \(\phi = 33^\circ 42', \phi'' = 28^\circ 28', \) and \(\phi' = 31^\circ 5' \). The difference between \(\phi \) and \(\phi' \) is so small, and the process of reckoning so elaborate, that many engineers think it good enough to assume that \(\phi = \phi' \).

Chalmers in making \(\phi' = \frac{1}{2} \phi \), instead of \(\frac{1}{2} (\phi + \phi'') \), may have done so under a misapprehension of Boussinesq’s complicated mathematics, but in any case he seems to have been in error, and our author, in following him, has gone the same way. In Fig. 1 the latter has shown the forces \(q \) and \(r \) as meeting the vertical \(p \) at the same point, but this is only achieved by locating \(r \) about half-way to the wall, instead of only one third the way up. In Fig. 2 also, the location of \(r \) on \(AO \), and of \(q \) on \(OX \), are shown at different levels, when they ought to be at the same level = \(\frac{1}{2} \) height above the base line. In Fig. 6 and elsewhere \(r \) is located correctly, but the location and direction of force \(q \) are not indicated. The fact is that in these cases \(q \) and \(r \) do not meet at the same point, on the vertical through the centre of gravity of the earth-wedge, whereas, by the Boussinesq construction, they do so meet. Some who adopt the value \(\phi' = \frac{1}{2} \phi \) defend it on the ground that the angle of friction of loose earth against smooth masonry is half that of loose earth within itself. But the back of a wall can usually be made so rough, or serrated, that relative motion between earth and masonry can only occur.
through shearing of the earth. If in any particular case it be considered necessary to make the back of the wall as smooth as its face, it should be recognised that that will require a 25 per cent increase of base thickness. In the case of the wall depicted in Fig 6, with base 12 feet thick, our author's construction gives a resultant thrust that strikes the base 25 (7 = b/10) distant from its toe, whereas in the case of a similar wall, but with base reduced to 10 feet, the Boussinesq construction shows resultant falling on base 25 feet (7 = b/8) distant from its toe. In the latter case Rankine's construction gives much the same result as Boussinesq's, but our author's resultant would strike the face wall 6 inches above base and would fall outside the toe.

Our author's construction, therefore, which he has derived from Chalmers, and which he has made, in par (26), Table I, the basis of all his rules of design, tends to make his retaining walls about 25 per cent too thick. It must be noted, however, that there are still College professors of civil engineering who adopt this construction, and that base thickness depends more upon the decision as to the value of φ' than on any other consideration, in cases to which the 'wedge-theory' is applied.

(B) Our author, in common with other exponents of the wedge-theory, expresses in par (57) a preference for a sloped, rather than a stepped or offsetted back to a retaining wall. Sir Benjamin Baker, in the paper quoted in par (5) did the same. Rankine, however, whose theory ignores earth-friction against the back of a wall, definitely preferred the back with vertical and horizontal offsets, because he took into account the weight of earth resting thereon. The sloped back, of course, lends itself as much to the one theory as the offsetted back does to the other. In the case of a wall with a vertical back, Rankine's process requires a wall 50 per cent thicker at base than that of Boussinesq; but in such a case a difficulty in the way of the wedge theory is that the forces, lettered by our author as \(p, q, r \) respectively, do not meet at a point.

To object, however, as Sir Benjamin Baker, as well as our author and others have done, to the offsetted back on the ground that it does not encourage the earth to press against it, seems somewhat illogical.

(C) Our author does not discuss the intensities of pressure occurring on the foundation soil of retaining walls, as, for instance, in the case of the wall considered in par (14), Fig 6, though he makes a reference to it in Chapp II, where it is not really relevant. Most professional treatises are vague in their treatment of this part of the problem, even if they do not altogether ignore it. They are apt to lavish a wealth of mathematics and theories on the stresses of the superstructure, but say little of those on the foundation soil, which is at the root of this difficulty. Sir Benjamin Baker pointed out, 99 per cent of the failure of foundation soil due to magnitude of the earth-pressure and therefore, also, the thickness of wall needed to resist it. In order to restrict the dimensions of walls within the bounds indicated by practice to be ample, the theorists, therefore, adopt the conventional fiction that the resultant thrust on the base of the wall may be allowed to approach up to a point whose distance from the toe is
one-eighth of the base thickness. But this is scientifically false, for it is
known that, in practice, in walls of the dimensions thus arrived at, the
resultant thrust will not approach to anything like that degree of closeness
to the toe. Our author, following Chalmers, has pointed out in par (5)
that the current methods of calculation ignore an important factor of
stability, which, if taken into account, would bring the resultant thrust
much nearer to the centre of the base of the wall. Our author explains the
omission of this factor on the ground that no definite value can possibly be
assigned to it.

In *The Engineer* of June 11th, 1926, Mr. F. W. Woods has suggested
a method whereby exaggeration of the earth thrust may be avoided, and
the true resultant-thrust kept within the ‘middle third’ of the base.

As Sir Benjamin Baker remarked: ‘To assume, upon theoretical
grounds a lateral thrust which experiments prove to be excessive, and to
compensate for this by giving no factor of safety to the wall is not a
scientific mode of procedure.’
CHAPTER II

GRAVITY DAMS AND WEIRS

(1) Dams of masonry or concrete can be classified into four distinct types, in the design of which different principles are involved. These are

A. Gravity dams and weirs
B. Arched dams and weirs
C. Arch and buttress dams and weirs
D. Reinforced concrete panel box dams

In addition to these, earth rock-fill and hydraulic-fill dams will be noticed elsewhere.

(2) Where water, and not earth, is upheld by retaining walls, its properties as a fluid and its weight, being definitely known, there is less uncertainty on the subject of the actual pressure exerted.

A dam may be defined to be a wall of masonry or concrete which upholds a mass of water at its rear while its face or lower side is free from the presence of water to any appreciable extent.

The waste water of the reservoir formed by the dam is disposed of in another direction by means of a waste weir or bye wash, or in rare cases by means of sluices through the body of the dam.

Weirs, though often confounded with dams, differ from the latter in the following points—viz., that water overflows the crest and in consequence tail water is formed below the wall. These two facts modify the conditions which are applicable to dams proper and consequently weirs demand separate treatment.

SECTION I—GRAVITY DAMS

(3) The pressure of water on the back of a wall at any point varies directly as the depth so that the water pressure can be represented by an equilateral triangle with its base equal to its height, the base being normal to the rear face of the wall.

The unit pressure exerted on any point in the back of the wall is represented by the ordinate of the triangle of pressure drawn parallel to its base, and the whole pressure by the sum of these ordinates, i.e., by the area of the triangle or prism.

When the back of the wall is vertical this area will be \(\frac{H^2}{2} \), \(H \) being the vertical depth of water and the pressure \(\frac{\nu H^2}{2} \), \(\nu \) being the unit weight of water, one thirty-sixth of a ton per cubic foot.
When the back of the wall is inclined, the pressure will be \(\frac{wH_1H}{2} \), \(H_1 \) being the inclined height of the back of the wall, which being always greater than \(H \), the vertical depth, the latter expression is also greater.

(4) Sections of gravity dams are invariably designed on the well known principle of the 'middle third.' This expression signifies that the profile must be such that the resultant pressure lines, or centres of pressure, due, first to the weight of the dam considered alone, and, secondly, to that of the water pressure in addition must both fall at or within the middle third of the section. These two conditions of stress are usually designated as "Reservoir Empty" and "Reservoir Full."

This stipulation ensures the fulfilment of three obligatory provisos, which are first, the absence of tension anywhere in the section, secondly, the limiting of the maximum compressive stress in any plane to a proportion not exceeding twice the mean or average stress on the same. It further usually ensures that the angle of inclination of the resultant pressures with the horizontal exceeds that of the angle of friction of the material, this is with reference to shearing stress. A limiting value to the maximum stress allowable in the masonry of the dam is also a further necessary condition that has to be observed.

(5) The theoretically correct profile of a dam subjected to water pressure under the conditions above outlined, and also of the most economical dimensions possible, is that of a right angled triangle having its back vertical and its apex at the surface level of the water. It can be proved that the proper base width of this triangle is expressed by the simple equation

\[
b = \frac{H}{\sqrt{\rho}}
\]

in which \(H \) designates the vertical height of the triangle and the Greek letter \(\rho \) (rho) the specific gravity of the material in the dam. This profile will be termed the Elementary Profile and is shown on Fig. 7.

A base width of such proportional dimension ensures the exact incidence of the vertical resultant force \(W \) of "Reservoir Empty" and also that of the inclined resultant \(R \) of "Reservoir Full" at the inner and outer third divisions of the base respectively. The same will naturally occur on any horizontal plane.

The fore slope or hypothenuse of the Elementary Profile, will be as \(\frac{1}{\sqrt{\rho}} \).

The value usually assigned to \(\rho \), the specific gravity of the material, masonry or concrete, of which the dam is composed, is \(2 \frac{1}{4} \) or \(\frac{9}{4} \).

In many dams this is exceeded and sometimes reaches as high a figure as \(2 \frac{7}{4} \), but the calculations for base width are generally founded on this value of \(2 \frac{1}{4} \).

As \(\sqrt{2 \frac{1}{4}} \) is \(1 \frac{1}{8} \), \(\frac{1}{\sqrt{\rho}} \) will be \(\frac{3}{8} \), and the correct proportion of the base...
will be $b = \frac{2}{3}H$, and the slope or batter will be as 2 horizontal to 3 vertical.

(6) The weight of a cubic foot of the material with $\rho = 2\frac{1}{3}$ is expressed by w_ρ, w being the weight of a cubic foot of water, that is $\frac{1}{3}$ ton nearly, w_ρ will then be $\frac{1}{10}$ ton.

The system adopted throughout this work in representing pressure in tons per square foot is clearly superior to the antiquated method still adopted in many technical works of using pounds per square inch.

Large denominations are more easily grasped and retained than small ones, thus the representation of the contents of a reservoir in acre-feet appeals to the mind better than gallons which run into millions. The use of pounds per square inch should be confined to steam or air pressures and mechanical engineering generally, for which a small denomination is clearly suitable. It may be noted there that $15\frac{1}{2}$ lbs per square inch is equivalent to $\frac{1}{10}$ ton per square foot.

(7) In the design of a section of a dam, pier, or retaining wall, the distribution of pressure on a plane in the section and the relations that exist between maximum stress (s) and the mean stress (s_1) are matters of the utmost importance.
The mean or average stress in any lamina is that which acts at its centre, and is in amount the resultant stress, the incidence of which may be at some other point, divided by the width of the lamina in question. Such width must be measured on a plane normal to the direction of the resultant force. For example, in Fig 1 the vertical line W represents the weight of the dam acting through its centre of gravity on its base b. The intensity of the mean stress induced at the centre of b, which being horizontal is normal to W, will be $\frac{W}{b}$. The maximum stress occurs at that end of the base nearest to the incidence of W, that is at the point A, the "heel" of the base. When, as in this case, the incidence of W is at the middle third point, this maximum unit stress will equal twice the mean, or $s = 2s_1 = 2\frac{W}{b}$.

This fact is due to the application of a well-known law, defining the relations between maximum and mean stress, which is expressed by the following formula

$$s = s_1 \left(1 \pm \frac{6c}{b}\right)$$

(2)

In this c is the distance of the centre of the lamina from the centre of pressure or in other words from the incidence of the resultant stress. When the plus sign is used, the equation gives the value of the maximum unit compressive stress at the end nearest to the centre of pressure, whether it be W or R, and when the minus sign is used that of the unit stress, which occurs at the other extremity. If the result is a minus quantity it represents a tensile, not a compressive stress set up at this extremity.

If the greater stress be termed P and the less P_1, and s_1, being as we have already seen, $= \frac{W}{b}$ when the incidence of the resultant stress W is at the centre of the base then $c = 0$ and the equation becomes

$$P = \frac{W}{b} \left(1 + 0\right) = \frac{W}{b}$$

and

$$P_1 = \frac{W}{b} \left(1 - 0\right) = \frac{W}{b}$$

That is, the maximum is equal to the mean stress.

Again when the incidence of W is at the boundary of the middle third, as is the case in Fig 1, then $c = \frac{b}{6}$ and

$$P = \frac{W}{b} \left(1 + \frac{6b}{6b}\right) = 2\frac{W}{b}$$

$$P_1 = \frac{W}{b} \left(1 - \frac{6b}{6b}\right) = ml$$

Thus the maximum is double the mean.* Lastly, if the incidence of W is at

* But see Editor's notes at end of this chapter. When there is tensile stress b changes to something less b and c to c'. — Ed.
the extremity of the case, \(c = \frac{2}{b} \) and

\[
P = \frac{W}{b} \left(x + \frac{3b}{b} \right) = 4 \frac{W}{b}
\]

\[
P_1 = \frac{W}{b} \left(x - \frac{3b}{b} \right) = -2 \frac{W}{b}
\]

In this case the maximum unit compressive stress is four times the mean while at the further end tensile stress is set up equal to twice the mean unit stress. The graphical process of obtaining the same results will be explained in par (24) later.

(8) Now with regard to \(R \) or the resultant pressure "Reservoir Full", this force being always a greater quantity than \(W \), whenever the question of the maximum permissible stress in the masonry of a dam comes under consideration, it is this force and not \(W \) that is the ruling influence.

With regard to the maximum pressure induced in the masonry by the force \(R \), this plane \(b \) is not normal to the direction of \(R \) but another plane (marked on Fig. 1) \(b_1 \) is so, consequently the mean stress induced by \(R \) is not \(\frac{R}{b} \), but \(\frac{R}{b_1} \), the mean unit stress is therefore greater than \(\frac{R}{b} \) as \(b \) is greater than \(b_1 \) and equals \(\frac{R}{b \cos \theta} \) \(\theta \) being the inclination of \(R \) to the vertical. On the horizontal base, however, \(s_1 = R \cos \theta - b \)

In graphical computation it is more convenient to increase \(R \), using \(b \) as denominator the result being identical.

In the force polygon \(1a \), if a line be set out at right angles from the extremity of the force \(R \), the intercept \(N_1 (= R \sec \theta) \) will represent the increased value assigned to \(R \), the mean induced unit stress on the base \(b \) will then be

\[
s_1 = \frac{N_1}{b} = \frac{R}{b_1}
\]

This is graphically demonstrated by the hatched areas below the profile in Fig. 1.

(9) Designs of parts of masonry works have often to be manipulated so as not only, as in this case, to bring the centre of pressure at the middle third point of the base, but so as to reduce the maximum unit stress to a less proportion than one of double the mean, and this can be effected by manoeuvring the position of the incidence of the greater resultant \(R \) to a point as near the centre of the base as possible, with a view to equalising the value of \(s \) with that of \(s_1 \).

(10) The values of the resultant and of the maximum induced unit stresses due to "Reservoir Full, or 'Reservoir Empty," are catalogued
below in terms of \(w \) and of \(\rho \) The values when expressed in tons assumes \(\rho = 2 \frac{1}{4} \)

\[
W \text{ or the weight of the triangular prism} = \frac{H^2 w \sqrt{\rho}}{2} = \frac{H^2}{48} \text{Tons} \tag{3}
\]

\[
R, \text{ the resultant (Reservoir Full)} = \frac{H}{\rho} = \frac{H}{\rho} \times 2 = \frac{H}{40} \text{Tons} \tag{4}
\]

\[
s^a \text{ or maximum unit stress (R E)} = H w \rho = \frac{H}{16} \text{Tons} \tag{5}
\]

\[
s^b \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text{(R F)} = H w (\rho + 1) = \frac{H}{111} \text{Tons} \tag{6}
\]

If the limiting permissible unit stress be designated by the Greek letter \(\lambda \) (lambda), the limiting height of the profile will be from (6)

\[
H^\lambda = \frac{\lambda}{w (\rho + 1)} \text{ or when } \rho = 2 \frac{1}{4} = \frac{H}{111} \lambda \tag{7}
\]

Thus if \(\lambda \) be 8 Tons \(H^\lambda \) will be 89 feet

\[
\text{10} \quad \text{111} \\
\text{15} \quad \text{165} \\
\text{20} \quad \text{220} \\
\text{25} \quad \text{275}
\]

The area of the elementary triangular profile is \(\frac{H^2}{2 \sqrt{\rho}} \), and that of the triangle of water pressure reduced to a masonry base is \(\frac{H^2}{2 \rho} \)

(11) In graphical computations the base of the triangle of water pressure is invariably made equal to \(\frac{H}{\rho} \) not to \(H \). This has the effect of reducing the pressure area from that of water, of specific gravity = unity, to the same denomination as that of the masonry of the wall, or of \(\rho \) with the result that \(w \rho \) becomes a common factor in both the masonry and water pressure areas. In the triangle of forces, the value of \(W \) and of \(P \) respectively can thus be represented by the half widths of their respective areas.

This procedure simplifies construction, as the common factors \(H \) as well as \(w \rho \) are eliminated \(H \) being also common to both triangles. In cases where \(H \) is not common and consequently cannot be eliminated, the values of \(W \) and of \(P \) will have to be represented by their areas the common factor \(w \rho \) being then the only one that can be discarded. The same procedure was observed in Chap I. Whenever actual values in tons are required, the measured length of the resultants in the force polygon have to be multiplied by those eliminated factors \(\tau \), by \(H \) and by \(w \rho \)

(12) In actual practice a dam must be provided with a crest of definite width and not terminate in the apex of a triangle. The imposition of the crest increases the stability of the section, but throws the incidence of \(W \)
the extremity of the case, \(c = \frac{2}{b} \) and

\[
P = \frac{W}{b} \left(1 + \frac{3b}{b} \right) = 4 \frac{W}{b}
\]

\[
P_1 = \frac{W}{b} \left(1 - \frac{3b}{b} \right) = -2 \frac{W}{b}
\]

In this case the maximum unit compressive stress is four times the mean while at the further end tensile stress is set up equal to twice the mean unit stress. The graphical process of obtaining the same results will be explained in par. (24) later

(8) Now with regard to \(R \), or the resultant pressure "Reservoir Full"; this force being always a greater quantity than \(W \), whenever the question of the maximum permissible stress in the masonry of a dam comes under consideration, it is this force and not \(W \) that is the ruling influence.

With regard to the maximum pressure induced in the masonry by the force \(R \), this plane \(b \) is not normal to the direction of \(R \), but another plane (marked on Fig. 1) \(b_1 \) is so, consequently the mean stress induced by \(R \) is not \(\frac{R}{b} \), but \(\frac{R}{b_1} \), the mean unit stress is therefore greater than \(\frac{R}{b} \) as \(b \) is greater than \(b_1 \) and equals \(\frac{R}{b \cos \theta} \), \(\theta \) being the inclination of \(R \) to the vertical. On the horizontal base, however, \(s_1 = R \cos \theta - b \)

In graphical computation it is more convenient to increase \(R \), using \(b \) as denominator the result being identical.

In the force polygon \(1a \), if a line be set out at right angles from the extremity of the force \(R \), the intercept \(N_1 (= R \sec \theta) \) will represent the increased value assigned to \(R \), the mean induced unit stress on the base \(b \) will then be

\[
s_1 = \frac{N_1}{b} = \frac{R}{b_1}
\]

This is graphically demonstrated by the hatched areas below the profile in Fig. 1.

(9) Designs of parts of masonry works have often to be manipulated so as not only as in this case, to bring the centre of pressure at the middle third point of the base but so as to reduce the maximum unit stress to a less proportion than one of double the mean, and this can be effected by manouvring the position of the incidence of the greater resultant \(R \) to a point as near the centre of the base as possible, with a view to equalising the value of \(s \) with that of \(s_1 \).

(10) The values of the resultant and of the maximum induced unit stresses due to "Reservoir Full," or "Reservoir Empty," are catalogued
In addition to the above, allowance has to be made for wave action, the height of which is obtained by the following formula

\[h = 1.5 \sqrt{I} + (2.5 - \sqrt{I}) \]

(10)

In this \(F \) is the pitch or longest line of exposure of water surface to wind, expressed in statute miles.

Thus if \(F = 4 \) miles the extra height above maximum flood level will be

\[(1.5 \times 2) + (2.5 - 1.4) = 3 + 1.1 = 4.1 \text{ feet}\]

If \(F = 10 \) miles, the height works out to \(5\frac{1}{2} \) feet. If the height of the crest is not made higher than the allowance necessary for wave action, the apex of the triangle of water pressure should correspond with this level. If on the other hand the crest is designed well clear of this point the apex will be at a lower level.

(15) To revert to the pentagonal profile, if the back of a dam is not vertical but canted forward, the stability will be injuriously affected, the incidence of \(K \) falling without the middle third. Thus we see that the vertically backed wall is the most economical profile for water, as it has already been shown to be for earth pressure. In weirs alone it is not so.

(16) We have seen that the elementary profile, or its modification, the pentagonal satisfies all imposed conditions of stability up to a certain point, which is the pressure limit, below this the simple profile must be departed from and the base widened out in order that the stipulated pressure limit be not exceeded while at the same time the other conditions are maintained. This widening adds immensely to the cost of a dam, consequently as high a pressure limit as is consistent with safety should be employed.

Of late years the adopted values of \(\lambda \), the limiting stress, have largely exceeded what was previously deemed the safe limit. For this bold innovation we are mainly indebted to American engineers, who have proved without doubt that pressures of 16 to 20 tons, i.e., double the old values, are quite practicable in gravity dams, whereas in arched dams even higher pressures than these are safe.

In the Roosevelt Dam (Fig. 26), one of the highest in the world, the elementary profile is strictly adhered to right down to the base, a depth of 230 feet. From formula (6), we obtain

\[s = \frac{H}{11.11}, \text{ i.e., } \frac{230}{11.11}, \text{ or over } 20 \text{ tons} \]

In contrast to this, the Assuan Dam has an imposed limit unit pressure in its piers of 5.4 tons only.*

Design of Dams below the Limiting Depth \(H^\lambda \)

(17) We have seen in par. (10) that the section of a dam can be carried down in accordance with the elementary triangular section or with such

* This was imposed by the designer in anticipation of a future increase in the height of the Dam. -- Ed.
modifications of it as are advisable, until the depth has a value of \(\frac{\lambda}{w (\rho + 1)} \), after which the procedure becomes more complicated, the maximum stress on the masonry, which must not be exceeded, adding another factor to the problem. Not only has one line of pressure, reservoir full, viz., \(N \), to fall at the middle third, but the base width will have to be increased in a greater ratio to satisfy the conditions of stress limit. This could be effected by means of trial and error by graphical process, but would be very troublesome and figured calculation from formulas deduced by analytical methods will be found easier to use. Thus this difficult subject has been very ably treated in the "Principles of Water Works Engineering," and an excellent example of the method of working out the varying width is given in the above work, which will be reproduced below in a somewhat condensed form.

The solution of this problem is based on the following — If a rigid body rest on a horizontal surface, the distance of the centre of pressure from the extremity of the base at which the maximum stress occurs is:

\[
I = \frac{b}{3} \left(2 - \frac{s}{2s_t}\right)
\]

(A)

where \(b \) is the width of the base, \(s \) the maximum stress intensity in tons, the average pressure on the base being \(s_t \), from which the following formula giving values of \(b \) is deduced:

\[
b = \frac{wH^4}{\lambda} \left(1 + \frac{w^2H^4}{4N^2}\right)
\]

(B)

\(\lambda \) the limiting and \(s \) the maximum stress being in this case identical. Here \(w = \) weight of water per cubic foot in tons, \(\text{viz.} \ \frac{3}{10} \) ton, and \(H = \) depth of water \(N = \) the vertical forces, \(\text{viz.} \), the weight of the masonry wall and of the water over the inner face where it is inclined, \(\text{i.e.,} \) Reservoir Full.*

From this equation \(b \) is found readily with a high degree of accuracy if \(N \) be known even approximately.

* Note — Formula (A) can be written \(\varepsilon = \frac{b}{3} \left(2 - \frac{\lambda b}{R}\right) \) because in this case \(s_t \) is the mean pressure on the base or \(R \) not \(N \), the same expression is \(\varepsilon = \frac{b}{3} \left(2 - \frac{\lambda b}{\sqrt{N^2 + P^2}}\right) \).

The base \(b \) is formed of three divisions (1) \(a \) from the toe to the incidence of \(R \), (2) \(f \) from the incidence of \(R \) to that of \(N \), and (3) that from \(N \) to the heel of the base. Now \(f = \frac{PH}{2N} \) obtained by taking the moments of \(N \) and of \(P \) about the incidence of \(R \) and (3) is postulated to be \(\frac{b}{3} \) whence \(\varepsilon = \frac{b}{3} \left(2 - \frac{\lambda b}{\sqrt{N^2 + P^2}}\right) \frac{PH}{3N} + \frac{b}{3} \) If the value of \(P \) the horizontal water pressure in terms of \(w \) and of \(H \) be substituted the expression will have the form given in formula (B) par. (17).

With regard to formula (C) The vertical forces whose moments about the inner third

\[
\frac{\lambda}{3} - \frac{x}{2} \quad \frac{b - x}{3} - x \quad \frac{3b - b + 6x}{12}
\]

By separately estimating the weights \(1 \), \(2 \) and \(3 \) the equation is very much simplified being reduced to a simple equation and \(x \) is found with ease. The one condition is that the incidence of \(N \) must be exactly at the inner third point of the new base. This proviso insures that both \(II \) reservoir empty and \(II \) fall within the middle third. The length given to \(b_3 \) also insures that \(s = \lambda \) the limit stress.
Having found b, or b_1, the next step is to ascertain how much of it must be under the inner face of the dam, i.e., within the vertical through the crest, in order to bring the incidence of the resultant weight of the whole superincumbent mass of the masonry and water to a distance of $\frac{b}{3}$ from the inner toe. This is arrived at by equating the moments of the vertical forces about O_1, the point in question (vide Fig 2), to zero, by which means we obtain the following equation, the solution of which gives the value of the distance x_1, i.e., the projection of the base at heel of wall —

$$\frac{Pud}{24} \left(3b^2 - b_1^2 + 6x_1(b + b_1) + 2bb_1\right) - \frac{ux_1}{12} (H + H_1) \times \left(2b_1 - 3x_1\right) - N \left(\frac{b_1 - b}{3} - x_1\right) = 0$$

H is depth of water at the base b, and $H_1 = H + d$, d being depth of lower lamina.

This formidable-looking quadratic equation is not so difficult to work out, as one would judge from its inordinate length.

From formula (B) the value of b_1 is obtained i.e., the bottom width of the first strip to be added below the base, and from (C) x_1 is found, which fixes the position of the new lamina with regard to the base above.

(18) The following illustration of the practical working out of the formulas (B) and (C) is given below.

Fig 3 represents the whole section of the dam, part of which is shown in Fig 2, the value of ρ being $2\frac{1}{2}$ and λ 10 tons, whence H, the limiting depth, will be equal to 111 feet, par. (10).
The base width at this depth will be equal to \(x \div 74.0 = 74.6 \), or excluding the back strip 74.0. The face line corresponds with that in the elementary triangular profile, no deductions having been made.

Now the weight of the section, including that of the water overlaying the portion \(EF \) of the back, is nearly 265 tons. The successive values of \(H \) to be considered will be:

<table>
<thead>
<tr>
<th>From crest to base of low dam</th>
<th>-</th>
<th>-</th>
<th>(H)</th>
<th>III feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st lamina</td>
<td>-</td>
<td>-</td>
<td>(H_1)</td>
<td>120 "</td>
</tr>
<tr>
<td>2nd "</td>
<td>-</td>
<td>-</td>
<td>(H_2)</td>
<td>130 "</td>
</tr>
<tr>
<td>3rd "</td>
<td>-</td>
<td>-</td>
<td>(H_3)</td>
<td>140 "</td>
</tr>
<tr>
<td>4th "</td>
<td>-</td>
<td>-</td>
<td>(H_4)</td>
<td>150 "</td>
</tr>
</tbody>
</table>

The respective values of \(b \) and \(x \) (Fig. 13) may be conveniently designated by \(b_1, b_2, \) and \(x_1, x_2 \), also the total weight of the dam and superincumbent water may be by \(N, N_1, \) and \(N_2 \).

First Lamina — At the base of the low dam (Figs. 2 and 3)

\[
N = 265 \text{ tons } \quad H = \text{III feet } \quad b = 74.6 \text{ feet } \quad x = 0
\]

If the profiles above \(b \) be produced down to the level \(H_1 = 120 \) feet, i.e., 9 feet deeper the weight of the trapezoid of masonry thus added is

\[
\frac{9 \times 74.6 (1 + \frac{120}{\text{III}})}{2 \times 16}, \text{ say, equal to 44 tons}
\]

Then, as a first approximation,

\[
N_1 = 265 + 44 = 309 \text{ tons}
\]

By equation (B), par. 17, introducing the proper value of \(\lambda \), or \(s \) of 10 tons

\[
b_1 = \sqrt{\frac{(120)^3}{360} \left(1 + \frac{(120)^4}{5184 \times (309)^2} \right)} = 82.5 \text{ feet}
\]

The next step is to find \(x_1 \) corresponding with this value of \(b_1 \). By equation (C), we have

\[
\frac{9}{16 \times 24} [3 \times 5565 - 6806 + 6 (1571) x_1 + 2 \times 6154] - \frac{x_1}{36 \times 12} [231 (165 - 3x_1)] - 265 (263 - x_1) = 0,
\]

that is

\[
16x_1^2 + 199x_1 - 177 = 0,
\]

therefore

\[
x_1 = \frac{-199 + \sqrt{39601 + 1133}}{32} = 9 \text{ foot}
\]

The values of \(b_1 \) and \(x_1 \) thus found, enable us to obtain a closer approximation to the weight of the trapezoid under consideration, and to determine the weight of water overlaying its inner face. The sum of these two quantities may be found to be 47 tons.
Then a second approximation gives

\[N_1 = 265 + 47 = 312 \text{ tons} \]

Introducing this value of \(N \) into equation (B), par (17), we find, as a second approximation,

\[b_1 = 82.3 \text{ feet} \]

which value of \(b_1 \) is so nearly that previously used in applying equation (3) as not to affect the already found value \(x_1 = 0.9 \text{ foot} \).

Thus we have at the base of the first lamina below the low dam—

\[N_1 = 312 \text{ tons, } H_1 = 120 \text{ feet, } b_1 = 82.3 \text{ feet, } x_1 = 0.9 \text{ foot} \]

(19) Second Lamina — Proceeding as before, produce the profiles immediately above \(b_1 \) down to the level \(H_2 = 130 \text{ feet} \), the weight of the trapezoid of masonry thus added, together with that of the water overlying its inner face, is

\[
\frac{10}{16} \left(\frac{82.3 + \frac{1}{2} \cdot \frac{10}{8} \cdot (82.3 - 74.6)}{2 \times 36} \right) + \frac{120 + 130}{2} \times 10 = 58 \text{ tons,}
\]

Then, as a first approximation

\[N_2 = 312 + 58 = 370 \text{ tons.} \]

Hence

\[b_2 = \sqrt{\frac{(130)^3}{360} \left(1 + \frac{(130)^4}{5184 (370)^2} \right)} = 92.5 \text{ feet.} \]

Applying equation (C), par (17), and introducing these values of \(b_2 \) and \(N_2 \), we find

\[x_2 = 1.4 \text{ feet.} \]

Correcting the weight of the trapezoid and its superincumbent water for this value of \(x_2 \), we have as a second approximation

\[N_2 = 312 + 59 = 371 \text{ tons,} \]

whence a re-application of equation (B), par (17), gives the corrected value

\[b_2 = 92.4 \text{ feet.} \]

Thus, at the base of the second lamina,

\[N_2 = 371 \text{ tons, } H_2 = 130 \text{ feet, } b_2 = 92.4 \text{ feet, } x_2 = 1.4 \text{ feet.} \]

(20) Third Lamina — Produce the profiles above \(b_2 \) down to the level \(H_3 = 140 \text{ feet} \)

As a first approximation

\[N_3 = 371 + 67 = 438 \text{ tons.} \]

\[b_3 = \sqrt{\frac{(140)^3}{360} \left(1 - \frac{(140)^4}{5184 (438)^2} \right)} = 102.8 \text{ feet} \]

By equation (C), par (17),

\[x_3 = 1.4 \text{ feet.} \]
This introduces no sensible correction in the value of \(N_3 \), and we therefore have, without further calculation, at the base of the third lamina

\[N_3 = 438 \text{ tons, } H_3 = 140 \text{ feet, } b_3 = 102.8 \text{ feet, } x_3 = 1.4 \text{ feet} \]

Fourth Lamina—Produce the profiles above \(b_3 \) down to the level \(H_4 = 150 \text{ feet} \)

As a first approximation,

\[N_4 = 438 + 75 = 513 \text{ tons} \]

\[b_4 = \sqrt{\frac{(150)^3}{360} \left(1 + \frac{(150)^4}{5184 (513)^2}\right)} = 113.3 \text{ feet} \]

By equation (C), par (17),

\[x_4 = 1.4 \text{ feet} \]

Again no sensible correction is introduced into \(N_4 \), and we have at the base of the fourth lamina

\[N_4 = 513 \text{ tons, } H_4 = 150 \text{ feet, } b_4 = 113.3 \text{ feet, } x_4 = 1.4 \text{ feet} \]

Summarising these particulars, we have.—

<table>
<thead>
<tr>
<th>Depth below crest of dam (ft)</th>
<th>Breadth of base (b)</th>
<th>Weight of masonry (tons)</th>
<th>Breadth measuring from axis under inner face (x) (ft)</th>
<th>Weight of water over inner face (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td>Feet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>264</td>
<td>0.6</td>
<td>(\frac{5}{3})</td>
</tr>
<tr>
<td>111</td>
<td>74.6</td>
<td>264</td>
<td>0.6</td>
<td>(\frac{5}{3})</td>
</tr>
<tr>
<td>120</td>
<td>82.3</td>
<td>303</td>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>130</td>
<td>92.4</td>
<td>362</td>
<td>2.9</td>
<td>9</td>
</tr>
<tr>
<td>140</td>
<td>102.8</td>
<td>424</td>
<td>4.3</td>
<td>14</td>
</tr>
<tr>
<td>150</td>
<td>113.3</td>
<td>493</td>
<td>5.7</td>
<td>20</td>
</tr>
</tbody>
</table>

(21) The foundations of dams are often carried for a great depth below the surface of the ground, and if a square concrete base with vertical sides is provided, closely adhering to the original cutting face or soil or rock, this portion may be considered as free from water pressure.

As a general rule, however, the dam is designed for full water pressure down to its actual base. Below this base a comparatively narrow trench filled with concrete and puddle has often to be excavated to great depths. This is simply a curtain wall to stop any chance of percolation, and is not designed to withstand water pressure.

(22) An example of the pentagonal profile of a dam 100 feet high, designed in accordance with the rules already given, is exhibited in Fig. 4. The base is made \(\frac{H}{\sqrt{\rho}} \times 100 = 66.7 \text{ feet} \). The crest is \(\sqrt{H} \), or \(\cdot15b = 10 \text{ feet} \). The base of the water pressure triangle is made \(\frac{H}{\rho} \times 4 \times 100 = 44.4 \text{ feet} \) for reasons previously explained.
The procedure of drawing the line of pressure in Fig 4 is that usually adopted for showing the points of pressure reservoir empty and full. The system consists of dividing the profile and triangle of water pressure into a certain number of equal laminae; in this case 5 numbered accordingly 1 to 5, while the corresponding divisions of the triangle of pressure are numbered 1 to 5. This latter having a horizontal base, all half-widths will be measured parallel to it. A series of independent combinations are now formed in the force triangles in Fig 4a viz. of 1 and 1, 1, 2 1 with 1, 2, 1, 2, 3, 1 with 1, 2, 3 and 1, 1, 2, 3, 1, 4, 1 with 1, 2, 3, 4. The centres of pressure of these three last combinations are discovered by use of the funicular 4b, and the intersection of the projected vertical resultants with the horizontal and inclined forces of each combination. The intersection of those same verticals with their respective base lines gives points on the line of pressure, reservoir empty. Thus each pair of forces is independently dealt with. This arrangement is so far advantageous in that error is not perpetuated. The system, however, can only be used when the back is in one straight line.

(23) In the force polygon Fig 4a, R_5 is the final resultant. As explained in par (8), by setting out a line at right angles from its lower extremity, the intercept cut off from a vertical line drawn from the upper extremity gives the value N_4, which is the actual maximum resultant pressure on the base. Another intercept N is formed by a horizontal line drawn from the extremity of the load line W. This N is the vertical component, Reservoir Full.

In this case the water pressure forces being all horizontal, $N = W$.

Figs. 4a and 4b
which otherwise would not be the case. In order to obtain the actual values of N and of N_1, the measured lengths in feet will have to be multiplied up by the eliminated common factors, i.e., by $\frac{H}{5}$ or by 20 and by $\nu \rho$ or by $\frac{1}{10}$ ton. Now N, or W, measures 172 feet and its actual value will be $172 \times 20 \times \frac{1}{10} = 215$ tons. This is the vertical weight per foot run of the dam. N_1 measures 240 feet and similarly its actual value will be $240 \times 20 \times \frac{1}{10} = 300$ tons.

(24) The graphical method of ascertaining the distribution of pressure on the base of the masonry wall, which has already been dealt with analytically.

![Diagram](image)

In par (7) is exhibited in Figs 5 and 5a, which are a reproduction of part of Figs 4 and 4a. The procedure is as follows — Two semi-circles are struck on the base with their centres at the two-third division points, and with radius $\frac{b}{3}$. From e, the point of incidence of R_b, the line eg is drawn to g, the intersection of the semi-circle. Again from the point g, a line gn is set off at right angles to eg, cutting the base or its continuation at the point n. This point n is the antipole of e, or the neutral point at which pressure is nil in either sense.

Below the profile another projection of the base is made. From g a perpendicular is let fall cutting the new base line in g^1, and its continuation g^1h is made equal to the mean unit pressure or to $\frac{N_1}{b}$. Another perpen-
dicular is then let fall from \(n \), cutting the new base in \(h_1 \), and then the points \(n^1 \) and \(h \) are joined and the line continued till it meets the perpendicular marked \(u \) from the toe of the base. Where \(u \) does not coincide with \(d \) the heel of the base, a further perpendicular must be drawn from the heel. The hatched trapezoid thus enclosed represents the distribution of pressure. In similar manner the pressure due to \(WP \) or \(N \), the vertical load, is shown.

(25) We have already seen (par. (23)), that the value of \(N_1 \) in Fig. 4a is 300 tons. The mean pressure will then be \(\frac{N_1}{b} \) (par. (7)) or \(\frac{300}{66\frac{7}{9}} = 4\frac{5}{7} \) tons. This is marked off from \(g^1 \) to \(h \) and \(u \) measures double the mean, or 9 tons.

In this diagram \(u \) happens to correspond with \(d \) because of the incidence of \(R_s \) at the outer third division point.

In the hatched area the intensity of pressure at any point in the base is measured by the vertical ordinate of the triangle.

A similar pressure area for the load \(N \) is given, here \(N = 215 \) tons, and

\[
\frac{N}{b} = \frac{215}{66\frac{7}{9}} = 3\frac{2}{7} \text{ tons},
\]

the maximum at the heel being \(6\frac{4}{7} \) tons.

(26) In Fig. 6 the distribution of pressure on the base due to the incidence of \(R \), first at the toe, secondly at the two third point and thirdly at the centre.
is illustrated. In the first case \((R^2) \) it will be seen that the neutral point \(n \) falls at the first third point. Thus two-thirds of the base is in compression and one third in tension, the maximum in either case being clearly proportionate to the relative distance of the neutral point from the toe and heel of the base, the compression at the toe being four times, while the tension at the heel is twice the mean pressure or \(\frac{N_1}{b} \) assumed at 4 tons.

In the second case \(R \) intersects at the two third point, and the consequent position of \(n \) is exactly at the heel. The whole base is then in compression, and the maximum double the mean.

In the third case \((R^2) \) the line \(gn \) will be at right angles to \(fg \), which is vertical, and consequently is horizontal, and the position of \(n \) is indefinite, the area of pressure thus becomes a rectangle with a uniform pressure of \(\frac{N_1}{b} \).

In Fig. 7 an intermediate case is exemplified.

\((27) \) In order to illustrate Haessler's polygon as used with a curved back Fig. 8 is produced.

The profile is similar to Fig. 4, but with a projection at the rear, the back of laminas 4 and 5 being battered outwards. The face line is also recessed within the elementary hypothenuse. The section is not put forward as a model but simply by way of illustration of the graphical system employed with a curvilinear back.

Two force polygons, Figs. 8a and 8b, are given, illustrative of two methods of graphical construction, which have identical results. The corresponding force lines in both figures are parallel and of the same lengths. Either can be used. The small detached triangle adjoining Fig. 8a is merely an enlargement of the first triangle of forces \(r, r_1, R_1 \), which is on too small a scale for accurate transmission to reciprocal lines on the profile.

The process having been already described in par. (30), Chap. I, need not be repeated. It differs from that shown in Fig. 4 in that the forces are not grouped in sets, each pair, with their resultant, being independent of the remainder, but the whole system forms a combination of all the several parts. The resultant lines of water pressure belong only to each lamina separately, and are drawn normal to the back of the wall. In the former case the water pressure lines belong to a group of several laminas, and consequently if the back of the wall is not in one plane any direction given will be erroneous.

\((28) \) As the laminas of the water pressure areas have inclined not horizontal bases, their mean widths multiplied by their vertical depth, \(r \) of, by \(\frac{H}{5} \), do not represent their areas, consequently \(\frac{H}{5} \) not being a common factor, cannot be eliminated, all the forces then would have to be represented by areas not half widths.

* But see Editor's Notes at end of this Chapter—Ed
This can be avoided by the following simple device which will be found frequently used in subsequent diagrams —

In Fig 8 let the back of the lowest lamina acdb be produced upwards to

\[A \] and \[A'd \] joined \[Acd \] is then the triangle of water pressure on the supposition that the back of the wall had the same inclination throughout as \[ac \] because \[cd \] has originally been made \[\frac{H}{\rho} \] the trapezoid \[acdb \] also represents the water pressure on the plane \[ac \]

Draw \[de \] parallel to \[ac \] and join \[Ae \] Then the triangle \[acd \] and \[ace \] are equal being on the same base \[Ac \] and between the same parallels But the area of the triangle \[Ace \] is equal to \[ce \times H \] consequently also the horizontally based trapezoid \[acdf \] which has \[\frac{H}{5} \] for its vertical depth is equal to the original inclined area \[acdb \] i.e. it represents the water pressure acting on \[ac \] The same procedure is followed with regard to the upper lamina With this alteration which takes longer to describe than to effect the horizontal half widths of the two newly formed pressure areas will truly represent their areas as their depth \[\frac{H}{5} \] is a factor common to all others
In Fig 9 a clearer illustration of the working is afforded the horizontally-based triangle ABD being substituted for its equal ABC the half width FG will then represent the area of either when H is eliminated

(29) Two further examples of dam sections are given in Figs 10 and 11. In both of these the back of the wall is given a slight batter to compensate for the imposition of the crest. The latter face also is not carried down vertically but is joined to where a height of $\frac{1}{2}H$ intersects the hypotenuse of the elementary triangle. This thick necked profile is preferred by some authorities as affording resistance to the great temperature stresses to which the upper quarter of a dam is subject as well as to the pressure of ice.

In Fig 10 the two lines of pressure are drawn through the profile Haessler system being employed.

In Fig 11 the dotted lines show the graphical reduction of the actual half widths which are reduced from a horizontal line to a smaller scale on the load line. The final resultants of R and W on the base are alone shown.

The drawing of pressure lines at end is really only necessary below the limiting depth but has been done in Fig 10 and other cases in order to illustrate the graphical methods employed.

(30) Some examples of actual sections confined to strictly modern types will now be given.
Fig 12 is of the Chartrain Dam erected some fifteen years ago. This dam may be considered as the latest exposition of French practice of which the Furens Dam was the first to be designed on strictly correct scientific principles. The crest is remarkably light and yet stiff and the roadway...
In Fig 9 a clearer illustration of the working is afforded the horizontally based triangle ABD being substituted for its equal ABC the half width FG will then represent the area of either when H is eliminated.

(29) Two further examples of dam sections are given in Figs 10 and 11. In both of these the back of the wall is given a slight batter to compensate for the imposition of the crest. The latter face also is not carried down vertically but is joined to where a height of $\frac{1}{3}H$ intersects the hypothenuse of the elementary triangle. This thick necked profile is preferred by some authorities as affording resistance to the great temperature stresses to which the upper quarter of a dam is subject as well as to the pressure of ice.

In Fig 10 the two lines of pressure are drawn through the profile Haessler's system being employed. In Fig 11 the dotted lines show the graphical reduction of the actual half widths which are reduced from a horizontal line to a smaller scale on the load line. The final resultant of R and W on the base are alone shown. The drawing of pressure lines at end is really only necessary below the limiting depth, but has been done in Fig 10 and other cases in order to illustrate the graphical methods employed.

(30) Some examples of actual sections confined to strictly modern types will now be given.
Fig. 12 is of the Chartrain Dam, erected some fifteen years ago. This dam may be considered as the latest exposition of French practice, of which the Furens Dam was the first to be designed on strictly correct scientific principles. The crest is remarkably light and yet stiff, and the roadway partly carried on arches overhanging the fore slope, which arrangement greatly adds to the architectural effect of the elevation.
The limit pressure is 91 tons, and the value of ρ is 2.4. The limiting depth is marked on the profile. The back is vertical up to this point, beyond which it widens out in accordance with the principles and method adopted in this work. The height H governing the base in the formula $b = \frac{H}{\sqrt{\rho}}$ is taken halfway between full reservoir level and the actual weir crest. The dam is built to a curve of 1,300 feet radius, and is over a tributary of the Loire.

(31) Fig. 13 is the section of the Periyar Dam in the Madras Presidency. The Periyar river is fed by the heavy rainfall of the western Ghauts. By means of the dam the natural outlet of the river is blocked and the supply is thus diverted by a tunnel cut through the watershed of the Peninsula into the comparatively rainless tracts east of the mountain barrier. It debouches into the channel of the Vaigai river, a stream running towards the east coast which will form the supply to a large canal and tank system.

Surplus water is passed over a waste weir on the left, in addition to which there is a wide bye wash or waste way cut in the solid rock on the right bank of the dam. The position of the work is shown in the site plan of
Fig 13a excepting that of the tunnel. This work was constructed under great difficulties due to the unhealthiness and remoteness of the site and also due to the timidity of the Irrigation Department in not sanctioning the construction of a sluice through the body of the dam so as to allow drainage to pass during the progress of the work which greatly increased the cost and the difficulties to be overcome. It can impound 156,500 acre-feet and was first opened for irrigation in October 1895.

(32) Fig 14 is a presentment of the section of the Marikanave Dam situated in the native State of Mysore.

It has the marked peculiarity of having its escape for surplus water below full requirement the dam having been constructed so high above the ordinary working capacity of the reservoir as to enable half the highest floods to be absorbed therein. It was found cheaper to do this than to provide an escape of the full flood capacity.

In this dam the value of ρ is 24 that of λ is 8 tons. It was built of rubble masonry set in Kunkur lime mortar an excellent native nodular limestone possessing hydraulic property which is found over large areas in gravel quarries composed of nothing but this material. Kunkur not only supplies all the lime but is used for the metalling of roads and other similar functions.

In this dam the extreme water level is estimated at 142 feet above bed level leaving a weather board of 10 feet. The elementary profile drawn on the section has its apex at the crest level as this outline appears to be more in consonance with the actual profile. This work is 1,200 feet in length. It is designed to store 183,500 acre-feet for irrigation of 30,000 acres of rice, but it has three and a half times that capacity between sluice floor and I'S L and five times the same up to maximum flood level.
(33) Fig. 15 is a section of the Bhatgarh Dam, which forms part of the Nira Left Canal Head works in the Bombay Presidency. Its height is 119 feet, and it has the appearance of having been designed according to the water level at RL 111, the divergence of its face from the hypothenuse of the elementary triangle with apex at 1190 being too great. It is provided with fifteen low-level vents, each 4 feet wide by 8 feet deep, and also turbine sluices.

This dam is 3,020 feet long and 127 feet high above lowest point in foundations. The prescribed limiting pressure, the vertical component only being considered, is 8 tons per square foot, and the average weight of the structure is stipulated not to be less than 160 lbs per square foot. Although the greater part is composed of concrete, yet this limit was actually exceeded.

![Diagram of Cheeseman Dam, Colorado](image)

The stone was mixed with large blocks of loose stone, which were inserted in the work as it proceeded. These saved mortar and added to the weight and efficiency of the concrete mass. The sides were lined with ashlar, and the lower portion was built with rubble masonry. The sluice ways were lined with cut granite ashlar blocks. On the section, the elementary triangular profile has been drawn, the base \(\frac{H}{\sqrt{\rho}} \) being 71 feet, \(\rho \) having a value of over 2\(\frac{1}{2} \). The actual base is 74 feet, probably to allow for compensation for the vantage.

The fifteen sluices are spaced 17 feet apart, so they do not require any special precautions of limit of pressure with regard to the piers such as are necessary in the Assuan Dam. It impounds 122,000 acre-feet.

* This dam has now been superseded by a new dam 160 feet high which has been built 200 feet downstream of the old one. The new dam was begun in the year 1912 and its com
(34) Of gravity dams the Cheeseman Dam in Fig. 16 is one of the highest existing examples. It is built on a curvature of 400 feet radius, and is for the water supply of Denver City, Colorado. The spillway for surplus flood

cumulation in 1928 is anticipated. It will have a storage capacity of 532,000 acre-feet and will supply water to the new Nira Right Bank Canal designed to irrigate 124,000 acres annually. —Ed
water is a bye-wash constructed in a narrow gap in the granite ridge, and is 300 feet wide.

The hypothenuse of the elementary profile is shown dotted in the section till it meets the actual base. At this level the value of s works out to 17.4 tons. This graphical calculation is not shown on the figure.

Calculated as an arch from the "Long" formula given in Chap. III, the pressure comes to 18 tons.

(35) The new Croton Dam for the water supply of New York City is a recently constructed work of great magnitude. The works consist of a dam carrying a roadway 20 feet wide on the crest and at right angles to it the waste weir is set, forming one side of the reservoir. By this remarkable arrangement one flank of the river valley is utilized for the weir and the escape channel which is walled off from the actual river channel below the weir. The original waterway down stream is filled up to a high level and utilized as a park or recreation ground.

The dam portion of the work is 1,168 feet and the weir 1,000 feet in length. The plan and elevation of the work, for which the author is indebted to the Engineer, are given in Figs. 17 and 171, the section of the dam in Fig. 17b. The section of the dam is remarkable for its great base thickness and the fact that the greater portion of it is buried out of sight below the bed of the reservoir. The maximum unit pressure is 11 tons. Owing to a fault in the rock foundation, it was deemed essential to carry the solid masonry down to this immense depth through 150 feet of sand and gravel. The rock eventually met with formed probably the bed of the ancient glacial river and the material dug out was deposited in that remote age.

(36) The Cross River Dam (Fig. 18) is another New York work, but on different lines to the two previous dams, having a closer correspondence with
the elementary profile. The limiting stress is apparently 10 tons only. The neck of this dam is designed thicker than in the last two examples on account of ice.

(37) Fig. 19 is a section of the Ashokan Dam for the New York Water works extension. The section is a very thick one extending in the upper
part 5 feet beyond the hypothenuse of the elementary profile, with the apex of the latter placed at crest level, if the apex were placed lower at halfway up the weatherboard which is no less than 20 feet deep, the discrepancy would amount to 10 feet. Both lines have been drawn on. This dam is fitted with a vertical line of porous blocks connected with two inspection galleries. This is in accordance with recent German practice to enable any leakage which would induce hydrostatic pressure to be stopped and drained off. It is probable that the introduction of this refinement is the cause of the unusual widening of the section. The dam is constructed of cyclopean masonry set in PC concrete. With the great interests involved, it was probably the determination of the designer to be absolutely on the safe side.

(38) The Roosevelt Dam is given in Fig. 20. It was completed in the year 1911. It is built on a curve of 410 feet radius to centre of crest, and 416 feet to extrados of the arch. It has been, however, designed as a gravity, not as an arched dam. The curve being introduced for greater security, as it allows of freer movement under changes of temperature than the straight alignment. However that may be if the apex of the elementary triangle were situated as is probably the actual case at 10 feet above the floor of the bye wash or waste way the value of \(H \) will be 230 feet requiring a base width of 154 feet according to formula 6 which is close to what it actually scales. The maximum unit stress has been worked out and amounts to

\[
\begin{align*}
\text{Fig 20—Roosevelt Dam}
\end{align*}
\]
If the stress were calculated as if the dam were an arch, it would work out by the long formula No 3 given in the next chapter, to 208 tons, so that the stresses are not identical whichever view is taken of the status of the dam. The profile is free from the faults of being too thin or too thick in the neck as is apparent in the last four examples and is considered unexceptionable in every respect. As noted above the section adheres closely to the elementary profile and forms a powerful advocacy in favour of the simple style of pentagonal profile favoured in this work.

The site plan given in Fig 20a forms an instructive example of the
arrangement of spillways cut in the solid rock out of the shoulders of the canyon, the material thus obtained being used in the dam itself. These spillways are each 200 feet wide, and are excavated to 5 feet below the crests of the waste weirs which cross them. This allows of a much greater discharge passing under a given head than could be the case were a simple

bye wash provided without any drop wall. The afflux is consequently diminished.

This dam will impound the enormous quantity of 1 1/2 million acre-feet. It spans the Salt River in Arizona, and is a U.S.A. reclamation project. On the same river below this work is situated the Granite Reef Weir, of which mention is made in the next section.
Fig 21 is a section of the Assuan Dam at its deepest part. This great work is built across the Nile at the first cataract. Its height is only 85 feet, but like most Eastern works, it makes up in length what it lacks in height, which former is 6400 feet.

The area now impounded is 863,000 acre feet, but it is intended to raise the crest to R.L. 1160:10 by 7 metres. This will double the capacity of the reservoir which will exceed that of the Roosevelt Dam. Even then its height will be only 106 feet, one-third of that of the Shoshone arched dam. This work is principally remarkable as being the only solid dam which passes the discharge of a large river like the Nile through its body. For which purpose it is provided with 110 low level sluices each 23 feet.
DEd by 61 feet wide and forty high level sluices 110 feet high and 6 feet wide. They are capable of discharging 500,000 second feet, the velocity in the low level sluices being as high as 20 feet per second. As a matter of fact, however, the rise and the fall of the Nile being very regular, the level in the reservoir can be so adjusted as never to strain the sluices to anything like this extent.

The profile is by no means a bold one; the unit pressure in the piers being limited to 8 tons only.

Even when the dam is raised, the unit stress in the piers would not exceed 10 tons. Nevertheless it is intended to widen the whole base in order to maintain the restriction in unit pressure which is now in force. To effect this an outer skin will be built on the down stream side and the space between it and the present face of the dam will be filled up with cement concrete.

Other sections of this dam showing details of the stone sluice gates and frames are given in Chap. XIV, Figs. 14, 15, 16.

The photograph Fig. 72 shows some of the sluices in operation and gives a good idea of the extent of the work.

SECTION II—GRAVITY WEIRS

(40) When water overflows the crest of a dam it is termed a weir and some modification in the design of the section generally becomes necessary and not only that, but the kinetic effect of the falling water has to be provided for by the construction of an apron or floor which in many cases forms the most important part of the general design. This is so pronounced in the case of dwarf diversion weirs over wide sandy river beds that the weir wall itself forms but an insignificant part of the whole structure and a separate chapter will have to be devoted to the elucidation of the complicated problem presented for solution. At present the section of the weir wall alone will be dealt with.

(41) Fig. 23 is a typical section of a trapezoidal weir wall with water passing over the crest. The height of the crest of the wall as before is designated by H, that of the depth above crest to reservoir level by d. The total height to the upper water level will therefore be $H + d$. The triangle water pressure will have its apex at the surface and its base will be $\left(\frac{H + d}{\rho}\right)$ or $\frac{H}{\rho}$ as previously, but it will be truncated at the crest level and the actual water pressure acting on the wall is the lower part of the triangle—a trapezoid whose base is $\frac{H + d}{\rho}$ and whose top width is $\frac{d}{\rho}$. Its area will therefore be

$$A = \left(\frac{H + d}{\rho} + \frac{d}{\rho}\right) \frac{H}{2} - H \left(\frac{H + d}{\rho}\right)$$

(IX)

* This work was carried out in the year 1911—Ed.
If the back is inclined, the area will be

\[A = \left(\frac{H + 2d}{2\rho} \right) \times H' \] \hspace{1cm} (IIa)

\[\text{Fig 23} \]

\(H' \) being the inclined length of the back of the weir wall. The distance of its point of application above the base

\[= \frac{H}{3} \left(\frac{H + 3d}{H + 2d} \right) \] \hspace{1cm} (II2)

(II2) With regard to the weir wall, the elementary triangular profile, so useful in the case of dams, will be found to be equally so as a guide to design in this case. When applied, its apex will in like manner be at the upper level, or at \(H + d \), and be similarly truncated at the crest.

The trapezoid thus formed will have a base width of

\[b = \frac{H + d}{\sqrt{\rho}} \] \hspace{1cm} (II3)

which formula will be found approximately correct, as a general rule, and with a top width of \(\frac{d}{\sqrt{\rho}} \) its area will be \(\frac{H + 2d}{2\sqrt{\rho}} \times H \)

The crest width of \(\frac{d}{\sqrt{\rho}} \) will, however, be found in practice much too narrow for actual requirements unless the depth of water above the crest or \(d \) is exceptionally great. The following rule will be found to provide a suitable crest width for most ordinary cases, viz.

\[c = \sqrt{H} + \sqrt{d} \] \hspace{1cm} (II4)

with \(\frac{d}{\sqrt{\rho}} \) as a minimum. This will also apply to submerged weirs, for instance, in the Narora Weir (Fig 24), \(H \) is 10 feet and \(d \) is 8 feet whence

\[c = \sqrt{10} + \sqrt{8} = 3.2 + 2.8 = 6 \text{ feet} \]

In the insubmerged La Grange
Weir (Fig 29) \(H = 120 \) and \(d = 16 \), the crest width would be \(11 + 4 = 15 \) feet.

In many cases, however, the necessity of providing space for falling shutters or for cross traffic during times when the weir is not acting renders obligatory the provision of an even wider crest. Damage due to shock from floating logs has also to be guarded against. With a moderate width, as obtained by formula (14), a trapezoidal outline has to be adopted in order to give the requisite stability to the section. This is formed by joining the edge of the crest to the toe of the base by a straight line, the base width of \(H + d - \sqrt{\rho} \) being retained.

This is done in Figs. 24 and 29 (post). When the crest width exceeds the dimensions of formula (14) the face of the crest should drop down vertically till it meets the hypothenuse of the elementary profile, as is the case with the pentagonal profile of dams. An example of this is given in Fig. 28 of the Dhukwa Weir. The tentative section thus outlined should be tested by graphical process, and if necessary the base width altered to conform with the theory of the middle third.

(43) In American practice with trapezoidal weir profiles, the width of the weir crest is made some fixed proportion of that of the base. To be universally applicable, however, the value of \(c \) should be also some function of \(d \), and it is possible that a formula might be devised, which should include all three influencing factors, viz., \(H \), \(\rho \), and \(d \).

With values of \(d \) up to 10 feet the following formula for base width for a trapezoidal profile will be found closely approximate to requirements, \(c \) or \(r \) being taken as 25,

\[
b = \frac{H + d}{\sqrt{\rho}} \times \frac{1}{\sqrt{r} + 1 - \frac{2}{3}}
\]

or \(\rho = \frac{2}{3} \) and \(r = 25 \) \(b = 6(H + d) \) (15a)

Formula (15) is strictly applicable to dams of trapezoidal profile, \(H' \) being substituted for \(H + d \). When applied to weirs, the value of \(c \) in the ratio \(b \) is the crest width on the supposition that the weir is a dam whose height \(H' = H + d \). The actual crest width at the lower level will naturally be wider than the assumed value of \(c \) at the higher level.

When a reservoir wall has its crest lowered for a portion of its length it acts both as a dam and a weir. Its outline is then usually trapezoidal, when formula (15) for base width will apply equally to both portions. The value of \(b \) will, however, be barely sufficient for the weir section were it not influenced favourably by the reverse pressure of the tail water.

(44) A weir is subject to the effect of the reverse pressure of the tail water down stream, from which a dam is usually exempt.

This reverse pressure modifies the position of the centre of pressure on
the base in a manner usually but not invariably favourable to stability. As the moments of the horizontal pressure of water on either side of the weir wall vary very nearly with the cubes of their height it is evident that a comparatively low depth of tail water will have but small influence and may well be neglected. This is accentuated by the slope given to the face when a vertical back is adopted by which the normal water pressure is given a downward inclination that reduces its capacity for good. The small result thus produced is illustrated in the force diagram Fig. 23a where the reverse is shown combined with the back pressure.

(45) Calculations of the depths of water passing over the weir or rather the height of reservoir level above the weir crest designated by d and of its reciprocal depth D in the tail channel are often necessary for the purpose of ascertaining what height of water level up stream or value of d will produce the greatest effect on the weir wall. In low submerged or drowned weirs the highest flood level has often the least effect as at that time the difference of levels above and below the weir are reduced to a minimum. This is graphically shown in Fig. 24 which represents a section of the Narora dwarf weir wall to which reference will subsequently be again made in Chap. VI. In this profile two resultant pressures R and R^1 are shown in which R^1 due to the much lower water level of the two states under comparison falls nearer the toe of the base.

(46) The rise of the river water produces with regard to the stress induced on the weir three principal situations or states which are enumerated below.

![Fig. 24 — Narora Weir Wall](image)
(1) When the head water is at weir crest level, then, except in cases where a water cushion exists, natural or artificial, the tail channel is empty, and the conditions are those of a dam.

(2) When the tail water is at weir crest level, in this case the reciprocal depth of the head water above crest is found by calculation.

(3) At highest flood level, the difference between the head and tail waters is then at a minimum. (2) Applies only to submerged weirs.

In a submerged weir the greatest stress is produced during state (2).

(47) The horizontal water moments on either side of a wall are related to each other in proportion to the cubes of their respective depths. In cases where the dividing wall is overtopped and one or both of the water pressure triangles are truncated, the moment of the resulting trapezoid of pressure will be the product of formulas (11) and (12) and will be

\[M = \frac{H^2}{6} (H + 3d) \]

(16)

The moment of the opposing tail water will be, if a triangle, \(\frac{D^3}{6} \), or if a trapezoid formula 16 will again apply, \(d^1 \) or \((D - H) \) taking the place of \(d \) in that expression. The difference of the two moments of water pressure up and down stream will then be the balance moment acting on the wall.

(48) In order to obtain the proper value of \(d \), during the second "state," it will be necessary to make a calculation of the discharge per foot run of the channel below the weir at the level of its crest.

(49) In the case of submerged weirs over rivers with sandy beds, the base of the weir and its floor often coincide with the averaged bed level of the river. The river also is of considerable width in proportion to its depth; consequently the formula 100 \(A \sqrt{\frac{R}{S}} \) can be simplified without sensible error by substituting \(D \) for \(R \).

As the discharge per unit length, or foot run only, is required, the area \(A \) will equal \(D \times \frac{x}{x} = D \), and, further, if the friction at the sides of the river be neglected \(WP \), or the wetted perimeter, will equal the base of the water section, \(i.e., \) unity, whence \(R = \frac{A}{WP} = \frac{D}{x} = D \). The formula then simplified becomes

\[Q = 100 \ aD^3 \sqrt{S} \]

(17)

The coefficient \(a \) can be obtained from Jackson’s "Hydraulic Manual," Table XII, Part 4, \(D \) being taken as \(R \), or from Higham’s Tables.

(55) Figs. 25 and 26 are examples of two low weir walls under similar conditions of water pressure. Fig. 25 is a vertically backed wall. Fig. 26 is of equangular section. The bed slope of the river, or \(S \), is assumed at

* A doubtful proposition in practice since the average bed level is liable to vary at different seasons of the year, \(i.e., \) at different stages of the river’s flow, especially when the river is flowing in more than one channel with sand banks between them. — Ed.
1 in 10,000 and when \(D = 15 \) feet which is the value given to \(H \) in the figure the reciprocal depth over crest namely \(d \) will be 6.5 (with \(n = 0.250 \)). The resultants are worked out on the supposition that the weir wall is on a porous sand foundation and is thus subject to loss of weight by flotation. This is the almost invariable status of dwarf diversion weirs. The incidence of the resultants on their bases go to show that the canting forward of the profile makes no practical difference in the stability of the wall but the reversal does as shown in Fig. 27 which however is under somewhat different conditions.

Some examples of high weirs will now be given.

(56) The profile of the Dhukwa Weir (Fig. 28) is that of a work thrown across the Betwa River in Bundelkund. Upper India with the object of forming a second reservoir to supplement the existing one at Parichha the head of the Betwa Canal. It was completed in the year 1910 and will be further described with reference to the project and to the weir shutters in Chap. VI.

In this place it will be sufficient to examine the section only. The tail water at full flood does not rise above half the height of the weir consequently as noted in par. (46) state (3) of maximum flood will give the correct value of \(d \) to be used in the formula (13) \(b = \frac{H + d}{\rho} \). Here \(H = 50 \) feet and \(H + d = 63 \) feet. The base width should then be \(\frac{3}{4} \times 63 \) or 42 feet which
it scales almost exactly. The crest width is necessarily very wide in order to accommodate the high collapsible weir shutters and their gear.

In a case like this the flood velocity of approach which must be considerable should be ascertained and the height sufficient to produce this velocity, added to $H + a$, making the formula for base width $\frac{H + \bar{d} + \bar{h}}{\sqrt{\rho}}$, and for crest width $\sqrt{H} + \sqrt{\bar{d} + \bar{h}}$

If the velocity of approach were 10 feet a second a not unlikely value in such a river b would equal 1.5 feet. This would however only slightly affect the values of d and of c.

* (57) The La Grange Weir (Fig 29) is an example of a very high overfall weir situated in California. The velocity of the 16 feet deep overfall is esti-
mated to be 13 feet per second. Assuming that in the reciprocal channel below to be 6 feet per second the ratio will be 2 1 1 therefore with \(d = \frac{16}{2} \) feet \(D \) will = 16 + 2 \(d \) = 34 feet which if measured above the given low water level will hardly reach half way up the weir face. Consequently high flood state \(\frac{3}{6} \) of par (46) will apply.

(58) The Granite Reef Weir (Fig. 31) is another example of an American weir. It is founded partly on rock and partly on boulders and sand. The section on the latter porous substratum is given in Chap. VI as belonging to that class of river weir. The superstructure above the floor level is the same throughout, but the foundations on rock are remarkable as being founded not on the rock itself but on a superimposed cushion of sand. Reinforced concrete piers spaced 20 feet apart were built on the bedrock to a certain height so as to clear all inequalities; these were connected by thin reinforced concrete side walls; the series of boxes formed were then filled up level with sand and the dam built thereon. This work was only completed in 1908 and as Schuyler’s Reservoirs, from which valuable work this account is taken, supplies no dimensions the portion of the profile below the floor is conjectural. Sand in a confined space is incompressible and there is no reason why it should not be used in like situations.

The section of the weir is exceptionally strong; its base being quite equal to its height.

It is an unfortunate fact that in most reference books containing record plans of irrigation works vital statistics such as flood levels, discharges
and other matters, are often wanting. A work admirable in this respect is the "Madras Irrigation Manual." The work of analysing designs is, therefore, often like making bricks without straw, as not infrequently the most important statistics are entirely unrecorded. The too persistent inroad of the photograph is also apt to vitiate the value of reference works. The photograph, useful as it may be in presenting an idea of the appearance of a work to the lay mind, can never take the place of a properly dimensioned drawing with the professional student, and the tendency is not to substitute one for the other.

(59) Another typical high American gravity weir is illustrated in Fig. 32 of the Mariquina Dam, situated in the Philippine Islands. The height is 60 feet, foundation, rock. Such a work could very well be erected with perfect safety on a boulder and gravel formation if a floor of suitable dimensions were provided, but the arch buttress type illustrated in the next chapter will be about 40 per cent cheaper.

(60) The Castlewood Weir (Fig. 33) is a high weir of peculiar construction being formed of dry rubble stonework enclosed in an outer casing of cement masonry. There appears to be no reason why a construction of this kind should not answer, but the fact remains that it did not. The structure developed serious leaks, probably owing to bad connections with the flanks of the canyon, and had to be reconstructed. This was effected by adding an earthen bank with a 3 to 1 slope on the rear of the work, and lengthening the outlet pipe accordingly.

(61) An example of a weir with a very high flood passing over is the Folsom Weir on the American River (Figs. 34 and 34a). The flood rises to
CHAPTER II—GRAVITY

R.L. 225 ft. 32 feet above the - - - - - - - - Engineering (Wilson)

Fig. 33—Castle wood Weir

The base width at sill of sluice will be by formula (1)
\[\frac{3}{4} \times 81 = 54 \text{ feet} \] which is just about what it scales. The formula (14) should be \(\sqrt{70} \times \sqrt{24} = 13 \frac{1}{4} \text{ feet} \) but the minimum

Fig. 87—Canal S

will be \(\frac{3}{4} \times 30 = 20 \text{ feet} \) (par 42) Its exceptional width of 24 feet is due to the hydraulic collapsible shutters which form so excellent a feature in the design

Figs 34 and 34a—Folsom Weir
(62) The highest weir in the world is that belonging to the Coolgardie water supply reservoir, near Fremantle, in Western Australia. The profile is given in Fig. 35. On account of its immense height, this structure is to all intents and purposes a dam. The tail water will have very little influence, except detrimentally as regards load on the foundations.

The limiting stress \(\lambda \) is 8 tons. The base of low weir and the elementary triangular profile have been dotted on the section. It is considered that the rear projection of the heel is excessive, a more nearly vertical back would be statically better. If the crest were thrown forward to reduce the ore slope and allow the water to fall clear of the face, the sectional area would have to be somewhat increased.

(63) Canal falls and tank escape weirs and works of this description subjected to a fixed and moderate depth of water, if built in solid clay cutting well backed with puddle, are not considered as subject to full hydrostatic pressure as would be a wall without such solid backing, consequently the base width can be reduced to a mean between that of a retaining wall for earth and one for water. This is effected by making the base width not \(\frac{H + d}{\sqrt{\rho}} \), as in formula (13), but

\[
b = \frac{H + d}{\rho}; \quad \ldots \quad \ldots \quad \ldots \quad (18)
\]

with \(\rho = 2\frac{1}{4} \) this is equivalent to \(b = \frac{4}{9} (H + d) \), and with \(\rho = 2 \) this is equivalent to \(b = \frac{H + d}{2} \).

This is termed the "Hybrid" section, and is further noticed in Chap IX.
(D) Foundation Pressures, pars (7) et seq

It is a fundamental principle of the design of high dams of masonry or concrete that they must be founded on hard, unyielding rock, relatively impermeable by water and proof against disintegration by percolation. Another fundamental principle is, as the author has pointed in par (4), that the profile of the dam must be such as will contain the lines of resultant pressure within the "middle-third" of its thickness. In the circumstances, the question of the effect on the foundation soil of resultant pressures falling outside the middle-third, cannot arise. It is different in the case of designs for retaining walls, which, as a rule, have to be built on ordinary soil—often on very soft, yielding soil—and in which, according to current conventions, it is correct to contemplate the resultant pressures falling far outside the middle-third. Our author has, however, in pars (7) et seq., and notably in pars (23), (24), (25), and (26), entered into a discussion of the theory regulating such eccentric pressures, in Chap II, instead of in Chap I. The formula used by him in par (7), viz

\[
\text{maximum stress} = \text{mean stress} \left(1 + \frac{6c}{b}\right)
\]

holds good only so long as the whole stress is positive, but when part of the stress is negative implying tension, instead of compression, the factor \(b\) is reduced to something less than the full base-thickness, and mean and maximum pressure intensities are increased. Thus, the formula holds good in the cases depicted in Figs 5 and 7, Chap II, and in stress diagrams \(R\) and \(R^2\) of Fig 6, but not in stress diagram \(R'\) of Fig 6.

In this last-named case the author infers that two-thirds of the base will be in compression when the resultant thrust impinges on the extreme toe of the base and when, therefore, presumably, the wall is just on the point of balance to overturn. That seems to be obviously an erroneous idea.

He is considering the conditions of a dam exerting a total vertical pressure of 300 tons on a base 66 7 feet thick. When this pressure is distributed evenly over that base its intensity is 4.5 tons per square foot. But in Fig 6, stress-diagram \(R'\), only two-thirds of the base, or 44.4 feet, is supposed to be in compression, which implies that the mean intensity is 6.75 tons per square foot, varying from zero at the \(\frac{2}{3}\) point, up to 13.5 tons per square foot at the toe. For some unexplained reason the author, in par (26), assumes the mean pressure intensity in Fig 6 to be 4 tons per square foot instead of 4.5, and, even so, his diagram \(R\), shows a compression area of \(\frac{16 \times 44.4}{2} = 355\) tons, although the weight of the dam and its load is only 300 tons. For the reason given by the author in par (17), if, in case \(R'\) of Fig 6, only two-thirds, or 44.4 feet of the base were in compression, the centre of pressure would be two-ninths, or 14.8 feet distant from toe of base, and not at the extreme toe-edge, as shown in Fig 6.

When the centre of pressure falls outside the middle-third of the base so that a portion of the base is under tension, the portion under compression is reduced from \(b\) to \(b'\), the mean intensity of pressure is increased to \(\frac{W}{b'}\).
and the deviation of the centre of pressure c' from the centre of base is
measured from the centre of b' instead of from that of b. The formula for
maximum stress becomes changed then from $\frac{W}{b} \left(I \pm \frac{6c}{b} \right)$ to $\frac{W}{b'} \left(I \pm \frac{6c'}{b'} \right)$.

In the case depicted in Chap. 4, Fig. 6, the total vertical pressure is
17.5 tons which distributed over 12 feet of base gives a mean of 1.46 tons
per square foot. According to our author's reckoning the centre of pressure
falls 1.25 feet inside the toe of the base. If that were true it would mean
that only $1.25 \times 3 = 3.75$ feet length of the base would be in compression,
the mean pressure on which would be $\frac{17.5}{3.75} = 4.67$, and the maximum at
toe would be 9.34 tons per square foot, an intensity which no soil except
hard rock could be relied on to support.
CHAPTER III

SECTION 1 — ARCHED DAMS (TYPE B)

(1) In this type, designated as B, the whole dam, being arched on plan, is supposed to be in the statical condition of an arch under pressure. As, however, the base is immovably fixed to the foundations by the frictional resistance due to the weight of the structure, the lowest portion of the dam cannot possess full freedom of motion or elasticity, and consequently must act more or less as a gravity dam subject to oblique pressure.

However this may be, experience has conclusively proved that if the profile be designed on the supposition that the whole is an elastic arch, this conflict of stresses near the base can be neglected by the practical man. The probability is that both actions take place, the true arch action, at the crest, gradually merging into transverse stress near the base, the general result being that the safety of the dam is enhanced by this combination of tangential and vertical stresses on two planes.

(2) In this type of structure, the weight of the arch itself is conveyed to the base producing stress on a horizontal plane, while the water pressure normal to the extrados, radial in direction, is transmitted through the arch rings to the abutments. The pressure is therefore distributed along the whole line of contact of the dam with the sides as well as the ground. In a gravity dam on the other hand the whole pressure is concentrated on the horizontal base.

(3) The average unit stress developed by the water pressure is expressed by the formula

(Short Formula) \[s_1 = \frac{RHw}{b} \quad b = \frac{RHu}{s_1} \] \hspace{1cm} (1)

in which \(R \) is the radius of the extrados sometimes measured to the centre of the crest, \(H \) the depth of the lamina \(b \) its width and \(u \) the unit weight of water. In this formula, \(\rho \), the specific gravity of the material in the arch, forms no factor. This simple formula answers well for all arched dams of moderate base width. When, however, the base width is considerable as, say, in the case of the Pathfinder Dam, the use of a longer formula giving the maximum stress \(s \) is to be preferred. This is derived from the same principle affecting the relations of \(s \) and \(s_1 \) or the maximum and average stresses, already referred to in Chap. II on Gravity Dams, pars. (7) and (17).

The expression is in terms of \(R \) and \(b \)

(Long Formula) \[s = b \left(\frac{2\:Hw}{R} \left(2 - \frac{b}{R} \right) \right) \] \hspace{1cm} (3)

also \[b = R \left(1 - \sqrt{1 - \frac{2Hw}{\lambda}} \right) \] \hspace{1cm} (4)
(4) In a manner similar to type A, the theoretical profile suitable for an arched dam is a triangle having its apex at the extreme water level, its base width being dependent on the prescribed limiting pressure. Successful examples have proved that a very high value for s (or λ), the maximum stress, can be adopted with safety. If it were not for this the profitable use of arched dams would be restricted within the narrow limits of a short admissible radius, as with a low limit pressure the section would equal that of a gravity dam.

(5) The water pressure on an arch acts normally to the surface of its back and is radial in direction, consequently the true line of pressure is the arch ring corresponds with the curvature of the arch and has no tendency to depart from this condition. There is therefore no point of rupture as in the case in a horizontal circular arch subjected to vertical, not radial pressure. This property conduces largely to the stability of an arch under liquid pressure. This condition is not strictly applicable in its entirety to the case of a segment of a circle held rigidly between abutments, as the arch is then partly in the position of a beam. The complication of stress involved is, however, too abstruse for practical consideration.

(6) As we have already seen the correct profile of the arched dam is a triangle modified into a trapezoid with a narrow crest, and with regard to arch stresses the most favourable outline is that with the back or extrados vertical. The reason for this is that the vertical stress due to the weight of the arch, although it acts on a different plane to the tangential stresses in the arch ring, still has a definable influence on the maximum induced stress in the arch ring. This vertical pressure produces a transverse expansion which may be expressed as $W \times E \times m$, in which E is the coefficient of elasticity of the material and m that of transverse dilatation. This tends, when the extrados is vertical to diminish the maximum unit stress in the section, whereas when the intrados is vertical and the back inclined, the modification of the distribution of pressure is unfavourable the maximum stress being augmented in similar degree. When the triangular profile is equiangular an intermediate or neutral condition exists. A profile with vertical extrados should, therefore, be adopted whenever practicable.

(7) In very high dams however, the pressure on the horizontal plane of the base due to the weight of the structure, becomes so great as to even exceed that in the arch ring, consequently it is necessary to adopt an equiangular profile in order to bring the centre of pressure at or near to the centre of the base so as to reduce the ratio of maximum pressure, and average pressure, to a minimum. As stated in the previous chapter, par (7), when a vertical through the CG of the profile passes through the centre of the base, the maximum pressure equals the average or $\frac{W}{b}$.

(8) When the back of an arched dam is inclined, the weight of the water superimposed is carried by the arch, and does not reach the base, but the
abutments. The unit pressure induced in the arch ring is clearly the same whatever be its inclination to the vertical, for this reason, that the liquid pressure never exceeds \(Hw \) (\(H \) being any vertical depth), and is radial and normal to the back in direction. The area of water pressure acting on an inclined, is naturally greater than that acting on a vertical surface, but the length of the surface in question is greater in similar degree, so that the unit stress in the arch ring remains unaltered, the total stress conveyed to the buttresses or abutments, is, however, naturally greater with an inclined than with a vertically backed profile. This does not affect the problem we are now considering: but when the dam consists of a series of vertical arches with intervening buttresses as in type C this question is one that demands attention. Some examples of arched dams will now be exhibited.

* **Bear Valley Dam (Fig 1)**

(9) This small work is the most remarkable example of arched dam in existence, and as a precedent is most valuable, the pressure induced in the arch ring just above the widening works out as 53 tons per square foot. The section would be better reversed. This proves the capability of this type of dam to stand a pressure previously deemed impossible.

* **Pathfinder Dam (Fig 2)**

(10) This immense work has a radius of 150 feet measured to the centre of the crest, that, however, of the extrados at the base of the profile is 186 feet, and this quantity has to be used for the value of \(R \) in the long formula No 3. The unit arch stress then works out to 118 tons. The average vertical stress on the base is 7 tons and the maximum about 8. If the profiles were altered to one with a vertical back, the arch stress would be less, as the radius would be reduced to 155 feet, but that on

* See Editor's Note at end of this chapter — Eds.
the base would be nearly double the average, viz., 14 tons. It is deemed that the existing outline is the better of the two.

(11) The Shoshone Dam (Fig. 3) is designed on identical lines to the last example. It has the distinction of being the highest dam in the world.

The value of \(s \) (vertical stress) is 14, and that in the arch 17 tons respectively, at the 245 foot depth. If the profile were altered to a vertically backed trapezoid, as shown dotted on the diagram, and the base extended at the toe, the superficial area would be increased from 21,000 to 22,000 square feet. The average vertical pressure would then be 10 tons and the maximum 19.6 tons, while the arch pressure will be 14 tons, the reduction in arch stress below the previous being due to the shortening of the radius at the base.
This proves the soundness of the inclined backed profile which has been adopted.

In both these dams a crest width of 10 feet has been adopted.

(12) The profile of the Sweetwater Dam in California is given in Fig. 4. This work, during a great flood was overtopped by 5 feet of water and
subsequently the crest was raised by a thin wall up stream to prevent its recurrence. The maximum unit stress developed works out by the long formula 3, par. (3), as follows:—The radius of the extrados at the base being 232 feet, \(\frac{b}{R} = \frac{46}{232} = 0.2 \). The expression then becomes by the "Long"
formula

\[s = \frac{2 \times 95 \times \frac{1}{2}}{2 \times (2 - 2)} = 147 \text{ tons} \]

The back is canted forward with the object of equalising the stress on the base. With a comparatively low height, as in this case, a slighter rear batter or a perfectly vertical back would answer better—for, as we have seen, the inclined back is not of advantage to the arch, throwing as it does a weight of water on the dam which otherwise would be avoided. The Sweetwater is a comparatively old work. The maximum unit pressure due to the vertical weight is obtained by using formula (2) par (7) Chap II \(W\) being equal to \(w\), or, in figures, \(2 \times 40 \times \frac{1}{10} = 140 \text{ tons}\). And \(c\) measuring 2.5 feet, the stress works out as below:

\[\frac{W(1 + \frac{6c}{b})}{b} = \frac{140}{46} \left(1 + \frac{15}{46}\right) = 4 \text{ tons nearly} \]

This is low unit stress, while that in the arch is high. With a vertical back, the former would be increased, which it can well afford, and the latter be reduced to 14 tons owing to the shortening of the radius of the extrados—besides being otherwise in a better statical position (vide par (6)). For the plan photographic view of this dam given as Fig. 4 it we are indebted to Schuyler's 'Reservoirs.'

(13) The Barossa Dam (Fig. 5) is an Australian work.

The back is vertical and the fore batter is almost 1 in 2.7. The outline is not trapezoidal but pentagonal viz., a square crest imposed on a triangle—
the face joined with the hypothenuse of the latter by a curve. The crest is slender, being only 4½ feet wide but is strengthened by rows of 40 lbs iron rails, fished together built into the concrete. The maximum arch stress works out to 15½ tons, the corresponding vertical stress on base to 6 tons.

Fig 5a is a site plan of the work, in which the wavy lines on the flanks represent earthen slopes not water.

(14) Arched dams built either on the solid rock banks of a canyon or else on the end of a gravity dam. In cases where a narrow deep central channel occurs in a river, this portion can advantageously be closed by an arched dam, while the flanks on which the arch abuts can be gravity dams aligned tangential to the arch at each end. The dam will thus consist of a central arch with two inclined straight continuations. The plan of the Roosevelt Dam (par (38), Chap. II) will give a good idea of this class of work.

(15) Fig 7 is the profile of a temporary reinforced arched dam for domestic water supply at Barren Jack, Australia. The reinforcement consists of iron rails. The arch pressure at the base works out to 29 tons nearly.

SECTION II—ARCH BUTTRESS DAMS (TYPE C)

(16) In this type, the dam is composed of a series of vertical or inclined arches divided into spans by buttress piers. The arrangement is in fact identical with that of a masonry arched bridge, if the latter could be considered turned over on one side.

The following estimate has been made of the economy in cost of this
type in comparison with the gravity type of dam, under the same condition of limiting stress —

At 30 feet in height, saving is 31 per cent

- 50 ... 28
- 100 ... 23
- 150 ... 12
- 200 ... 9

In a design at the end of this chapter for a Dam of type C, 64 feet in height the saving in material works out to 50 per cent, so that by allowing proper high stresses for arches under liquid pressure and by adopting large spans the actual saving effected will, it is believed considerably exceed that given above.

(17) The first example will be that of the Mir Alam Tank dam (Fig. 8) This work is situated near Hyderabad, the capital city of the Nizam's dominions in the Deccan South India.

This remarkable structure is quite unique of its kind and forms a most instructive example of the principles governing the design of this type of dam. It was built over a century ago by some engineer of John Company, whose name has not been handed down by fame to posterity. The dam, which is aligned on a wide curve consists of a series of vertical semi-circular arches of various spans. These arches abut on buttress piers. The spans vary in width from 70 to 147 feet, one of which latter is shown in Fig. 8. The height is 40 feet. Water has been known to overtop the crest.

On account of the inequality of the spans the adoption of the semi-circular form of arch is evidently a most judicious measure, for this reason, that an arch of this form under liquid pressure exerts no lateral thrust at the springing. The water pressure, as already noted in the previous section, is radial in direction, consequently the half arch is balanced and in equilibrium. Whatever thrust is exerted is not in the direction of the axis of the arch, but on that of the buttress piers, i.e., at right angles to the springing line. On the other hand, if the arch were segmental in outline, as is shown dotted on Fig. 8, the tangential thrust is intermediate between the two axes, and when resolved in both directions one component of the thrust acts along the axis of the dam. This has to be met either by the abutment, if it is the end span, or else by the corresponding thrust of the adjoining half arch. The other component is carried by the buttress, therefore, if segmental arches are used in order to avoid inequality of thrust the spans must be equal.

The whole work is built of brickwork, but the unit stress in the arch ring at the base, using the short formula \(s_1 = \frac{RHw}{b} \) par (3), works out to over 10½ tons. This dam therefore forms a useful precedent as proving how high a stress can be borne with safety by an arch of such decidedly inferior material as brickwork in ordinary lime mortar. The arch is vertical and 8½ feet thick throughout, and 40 feet high.
The buttress piers in this work are very short projecting only 25 feet beyond the spring line of the arches and being altogether only 42 feet long. This length and the corresponding height would clearly be inadequate to withstand the immense horizontal thrust which is equivalent to \(\frac{H^2}{2} \times 2 \times l \)

\[
= \frac{1600 \times 173}{2 \times 36} = 3844 \text{ tons}
\]

This is proved in Fig 8a where the resultant stress line on this supposition falls just outside the toe of the base and has a dangerously low inclination to the horizontal. It is evident that if the
buttress pier slides, or overturns, the arches behind it must follow suit, for which reason the two half arches and the buttress pier cannot be considered as separate entities, but as actually forming one whole, and consequently it follows that the effective length of the base must extend from the toe of the buttress right back to the extrados of the two adjoining arches. At, or a little in rear of the spring line, the base is split up into two forked curved continuations. The weight of these arms, belonging to the adjoining arches, has consequently to be included with that of the buttress proper when the stability of the structure against overturning or sliding is estimated.

(18) In the transverse section (Fig 8a), the graphical calculations establish the fact that the resultant line intersects the base thus lengthened almost exactly at its centre, the direction of the resultant R is also satisfactory as regards the angle of frictional resistance. The maximum unit pressure in the masonry of the pier is $\frac{R \sec \theta \times W}{\text{Area of base}}$ (par (8), Chap II), which works out to 3.4 tons only. In estimating A, or the area of the base, the length scales 107 feet, but the width of the buttress portion is 25 feet, while that of the two branches combined is 17 feet. The greater curved length of the latter, however, if allowed for, would enlarge the area by about $\frac{1}{2}$, which would be equivalent to increasing the width to 21 feet. Therefore 22 feet has been adopted as an average representative width for the whole base. The actual figures are $\frac{14,300 \times 2}{36 \times 107 \times 22} = 3.4$ tons. The specific gravity is taken as 2. The quantity 14,300 is the value of N_1, or of $R \sec \theta$, not shown in Fig 8b. The incidence of the resultant actually falls within the two arches, not in the buttress proper.

(19) The design could be much improved by altering the distribution of the material of the section of the arch, by making it trapezoidal instead of rectangular in profile. This is effected by increasing the base and decreasing the crest width. Thus, for the same sectional area, a much stronger profile could be produced subject also to nearly half the unit stress to which it is liable in its present form. The base could be widened from 8 1/2 to 14 feet, and the crest reduced to 3 feet or $\frac{\sqrt{H}}{2}$ per (11). The maximum unit stress would then be lowered from 10 6 to under 6.5 tons.

(20) If the arch were altered on plan from a semicircle to a segment of a circle, the radius would of necessity be increased, and the stress with it, a thicker arch would therefore be required. This would not quite compensate for the reduced length of arc, but on the other hand, owing to the crown being depressed, the effective base width is reduced and will have to be made good by lengthening the buttress piers. What particular disposition of arch and buttress would be the most economical is a matter which can only be worked out by means of a number of trial designs.
(21) There are not many modern examples of arch buttress dams. The Mir Alam Dam has remained resting on its laurels without a rival for over 100 years. Fig 9 is an early example of a segmental panel arch dam. It is of the Belubula Dam in New South Wales. The arch crest is 37 feet above base very nearly the same as in the last example. The arches which are inclined 60° to the horizon are built on a high solid platform which obliterates inequalities in the rock foundation. This platform is 16 to 23 feet high so that the total height of the dam is over 50 feet. The spans are 16 feet with buttresses 12 feet wide at the spring line tapering to a thickness of 3 feet at the toe they are 40 feet long. The buttress piers which form quadrants of circles in elevation diminish in thickness by steps from the base up these insets corresponding with similar ones in the arch itself. These steps are not shown in the drawing; the arch also is drawn as if in one straight batter. The arches are elliptical in form and the spandrels are filled up flush with the crown presenting a flat surface towards the water.

(22) Some of the features of this design are open to objection. Firstly the filling in of the arch spandrels entirely abrogates the advantage accruing to arches under liquid pressure. The direction of the water pressure in this case is not radial but normal to the rear slope thus exactly reproducing the statical condition of a horizontal arch. The pressure therefore increases from the crown to the haunches and is parabolic not circular in curvature. The arches should have been circular not elliptical with the spandrels left empty to allow of the radial pressure which is so beneficial. Secondly the stepping in of the intrados of the arch complicates the construction. A plain batter would be easier to build particularly in concrete. Thirdly the tapering of the buttress pier towards the toe is quite indefensible the stress does not decrease but increases towards the toe being a maximum at the edge of the section. The whole structure is liable to overturning moment which moment is resisted by its base so that any reduction of area at the toe of the buttress accentuates the unit stress at the most critical point.

(23) The inclination of the axis of the arch to the vertical is generally a desirable in fact a necessary feature wherever segmental arched panels are used the weight of water carried is of value in depressing the final resultant line to a suitable angle having regard to frictional resistance to shearing stress. As noted in Section I the weight of the water overlying the arch does not increase the unit stress in the arch ring. Consequently any inclination of the arch can be adopted without in any way increasing the unit stress due to the water pressure. This is due to the radial and normal direction of the pressure which causes it to be all taken up by arch stress. When however the arch is inclined a certain proportion of the weight of each lamina in which it may be considered as divided is conveyed by arch action to the abutments. In the diagram (Fig 9a) the vertical load line \(W \) represents the weight of one unit or one cubic foot of the arch ring which is equal to \(wP \). This force is resolved in two directions one parallel to the axis of the arch and the other normal to the former. The force \(n = W \sin \theta \), \(\theta \) being the
inclination of the arch axis to the vertical, $p = W \cos \theta$. The unit stress developed by the radial force u is similar to that produced by the water pressure which is also radial in direction and is $R_1 u$, but R_1, the radius in this case, is the mean radius, the pressure being internal, not external. The unit stress s will then be

$$s = R_1 u \rho \sin \theta$$

When θ is 30 degrees, $\sin \theta = \frac{1}{2}$, when 45 degrees $\sin \theta = 0.707$
It will easily be understood that this unit stress due to u does not accumulate, but is the same at the first foot depth of the arch as it is at the bottom, the width of the lamina also does not affect it. The component p does, however, accumulate, and the expression $uw \cos \theta$ should be multiplied by the inclined height h lying above the base under consideration. As

$$h = H \sec \theta,$$

the unit compressive stress at the base will be $\frac{Huw \times b^1}{b}$ in which b^1 is the mean width of the arch. If the arch were a rectangle, not a trapezoid, s would be Huw simply.

(24) Fig. 10 is a design for a segmental arch panel dam, or, rather, weir. The height of the crest is 64 feet above base, with 5 feet of water passing over, the apex of the triangle of water pressure will then be 69 feet above the base. The inclination given to the axis, which is coincident with the spring line and the intrados, is 60° with the horizon.

In designing such a work, the following salient points first require consideration:

Firstly Width of span. This, it is deemed, should for economical reasons be never less than the height of crest above base. In the Mir Alam Dam the span is over three times the depth of water upheld. In the present case it will be made the same, that is 64 feet.

Secondly Thickness of buttress piers. As with bridge piers the width should be at least sufficient to accommodate the skew backs of the two arches, and a width of 12 feet or about $\frac{3}{4}$ span will effect this.

Thirdly Radius and versed sine. The radius will be made 40 feet, thus allowing of a versed sine of $\frac{1}{4}$ span or 16 feet, which is considered a correct proportion to afford a good curvature.

Fourthly Thickness of arch. This must first be assumed, as its thickness depends on R, the radius of the extrados, as well as on the value assigned to λ, the limiting pressure. This latter will be fixed at $12\frac{1}{2}$ tons, a value by no means excessive for arches under liquid pressure. With a base width of 7 feet, the radius of the extrados will be 47 feet. The base will be considered, not at the extreme depth of 64 feet below crest, but at the point marked D, where a line normal to the inclined intrados at its base cuts the extrados of the arch H will therefore be 60 feet. The stress due to the water pressure, using the short formula (3) par (3), will be

$$\frac{RHuw}{b} = \frac{47 \times 60 \times 1}{7 \times 36} = 11.2 \text{ tons}$$

To this must be added that due to the weight of the arch ring from formula (6), par (23): $s = \frac{RuwP}{2}$ (the angle θ being 30° and $\sin \theta = \frac{1}{2}$), which will be in figures $43.5 \times \frac{1}{2} \times \frac{1}{16} = 1.35$ tons, the total stress being a trifle over 12½ tons. The 7 feet base width will then be adopted. The depth of water producing this pressure is taken as 60 not as 65 feet, which is $H + d$, the reason being that the reverse pressure due to the tail water, which must at
least be level with the water cushion bar wall, will reduce the effective depth to 60 feet

(25) The reverse pressure has a great influence in the case of calculations based on the hydrostatic pressure alone, the head being the difference of levels—above and below, whereas, where overturning moment is concerned, the balance moment (vide formula (16), par (47), Chap II) is

\[M = \frac{H^2}{6} (H + 3d) - \frac{h^3}{d} \]

or taking the base of both triangles of pressure at the level of \(D \),

\[M = \frac{3,600}{6} (60 + 15) - \frac{125}{6} = 45,000 - 21 = 44,979 \text{ feet} \]

The relation of the reverse to the up stream moment is then \(1 \rlap{3}{2},143 \), whereas the reverse pressure which affects the thickness of the arch is as \(5 \rlap{6}{65} \) or \(1 \rlap{3}{13} \).

This question of the great divergence between simple hydrostatic pressure and overturning moment produced by the same head or difference of levels is one often lost sight of. Works are stated to be subject to a certain head of water pressure which, unless the depths up stream and down stream are known, can give no correct impression of the effect produced. It would do so in the case of a floor on a porous foundation exposed to upward hydrostatic pressure, but not so when the horizontal pressure of water acting against a surface has to be considered.

(26) The crest width of the arch according to formula (5), par (11), should be \(\frac{\sqrt{H}}{2} = 3\frac{1}{2} \text{ feet nearly} \). It will be made 3 feet, with a stiffening rib or rim of 2 feet in width. It could well be made a fraction of the base width, say \(= 3\frac{1}{2} \), and be reinforced wherever the thickness falls below 2 feet.

The length of the pier base is measured from the extrados of the arch, the two half arches forming, as already explained in par (17), a forked continuation of the buttress pier base.

The battering of the sides of the pier would clearly be a correct procedure, as the pressure diminishes from the base upwards. A combined batter of \(1 \) in 10 is adopted which leaves a crest width of 5 6 feet. The length of the pier base, as also its outline, were determined by trial graphical process, with the object of manoeuvring the centre of pressure as near that of the base as possible, so as to equalise the maximum and the mean unit stress as much as possible. This has been effected as shown by the incidence of the final resultant on the elevation of the buttress pier.

(27) Pressure on foundations

The total imposed weight is measured by \(N \) in the force diagram and amounts to \(150,000 \) cubic feet of masonry which at a specific gravity of \(2\frac{1}{4} \) is equivalent to \(\frac{150,000}{16} = 8,138 \text{ tons} \). The average pressure is this quantity divided by the area of the base, or by \(125 \times 12 = 1,490 \text{ super. feet,} \)
the quotient being 5½ tons nearly. The maximum pressure will be the same owing to the incidence of \(R \) at the centre of the base. It will be noticed that a growth exceeds \(R \). This is due to the added weight of water represented by the inclination given to the force line \(P \), which represents the water pressure.

According to the force diagram \(N^2 \) scales 17,400 cubic feet or 10,800 tons. Dividing this by the area of the base or by 1,490 super feet the quotient 7.2 tons is the average or mean unit stress the maximum being the same. The cubic contents per foot run works out to \(\frac{64,000}{76} = 850 \) cubic feet nearly, but if the stress be increased to 10 tons in the buttress this will be reduced to 800 cubic feet.

The contents of a gravity weir with base width \(\frac{1}{3} (H + d) \) and top width \(\frac{1}{2} (H + \sqrt{d}) \) works out at 720 cubic feet, the saving in material is therefore over 50 per cent.

(28) The Ogden Dam Fig. 11, hitherto erected is a notable example of the arch and buttress type C. Its height is 100 feet that is in excess of anything

![Diagram of Ogden Dam, Utah](image-url)
unnecessarily thick at the crest and could well be reduced from 6 to 2 feet, thus effecting considerable economy. The designers were evidently afraid of the concrete in the arch leaking, and so overlaid the extrados with steel plates. The finish off of the crest by another arch forming a roadway is an excellent arrangement, and is well suited for a dam, for a weir, on the other hand, the curved crest is preferable from the increased length of overflow provided. The stress diagram shows that the value of N_1 is 13,125 tons. The incidence of R on the base is 5 feet from the centre, consequently $S = \frac{N_1}{d} \left(1 + \frac{6c}{b} \right) = \frac{13,125}{110} \times \frac{1}{16} \left(1 + \frac{3}{11} \right) = 8.9$ tons (vide formula (2), par (7), Chap II)

The pressure on the arch ring at the base by the short formula works out by $\frac{RH_h}{t}$ to $\frac{24 \times 100}{8 \times 36} = 8.3$ tons

The contents of the dam per foot run amounts to $\frac{104,500}{48} = 2,177$ cubic feet, that of a gravity dam would be about 3,500 cubic feet per foot run, making a percentage in favour of the arched type of nearly 30. Actually the saving amounted to only 12 per cent, this was owing to the steel-covering.

REINFORCED CONCRETE FLAT DECK DAMS AND WEIRS (TYPE D)

(29) Of late years an increasing number of dams and weirs of the panel and buttress reinforced concrete type have been constructed of heights, it is believed, up to 100 feet. These are all on much the same pattern. This consists of a deck sloping at 45°, supported by buttress piers at short intervals. These piers are nearly triangular in profile, having their apex at a point above crest level. On the down stream slope a thin covering is often placed over the ends of these piers, providing a runway for water if a weir. The whole thus forms a hollow box with numerous partition walls. The space thus provided is utilised in some cases to accommodate the power plant and to afford cross communication. In the former case the partition walls are
not continuous across, but form an arcade, affording space for the machinery. The designs are admirable, the only point remaining to be decided is whether

ey can be improved upon in point of cost by substituting arches for the reinforced flat panels and converting the profile into type C. The use
of a flat deck demands considerable reinforcement, as well as frequent supports

(30) An example of a small work in type D is given in Fig 12 of the Schuylerville Weir, while an alternative design in type C has been prepared in Fig 13 and 13a. The arrangement is similar to the last example (Fig 9), except that the piers are hollow. No doubt a wider span than 20 feet would give better results.

The comparative quantities per foot run are as follows —

Fig 12 Reinforced concrete 215 cubic feet per foot run
Fig 13 Plain concrete 178 " " "

This is considerably in favour of type C.

On the other hand, a direct overfall is provided in the last, not a rollway although the direct overfall is considered the better style, barring ice floes.*

(31) Another much larger section is given in Fig 14, that of the Ellsworth Weir. This work is of the same height as Fig 10, which was designedly made so for the sake of comparison.

The comparative quantities per foot run of these two can now be set out

Fig 14 Reinforced concrete, 11,000 cubic feet per 15-foot bay, equivalent to 733 cubic feet per foot run
Fig 10, as by par (27), 800 cubic feet per foot run (with S raised to 10 tons)

The advantage in actual quantity of concrete lies with Fig 14, but when the cost of the steel, which amounts to $1½ tons per 15 foot bay together with the extra expense involved in construction and in the quality of the concrete, is taken into consideration the advantage will be with the arched type.

Editor’s Notes

(E) Par (9), Fig 1, Stresses in Arched Dams

The old Bear Valley Dam, of Redlands (Cal. USA), which is depicted in Fig 1, was built in the year 1884 for the syndicate of a local irrigation enterprise. Its total height above foundations is 64 feet, and it was designed with a base-thickness of 20 feet, but (as the story goes) a crisis of financial stringency arose after the dam had been built up 16 feet only, and the engineer was faced with the alternatives of either abandoning the project or of building the dam, from stream-bed level, upwards, to a much slenderer section than he would otherwise have considered advisable. Hence the curious appearance of the profile. The dam was curved, in plan, to a radius of 335 feet, and its arc was 300 feet long at top. It stored 1,742 million cubic feet of water for the irrigation of the lovely and productive orange groves of Redlands. The desirability of storing larger water supplies for extensions of these orchards led to a project for a larger reservoir formed by a higher dam. The existing dam had shown no sign of weakness, but the engineers were afraid to tempt Providence by building it up higher. They

* But the direct overfall will require a rock soil to resist the force of the falling water. This will not be so necessary in the Fig 12 type — LD.
therefore decided to face the extra cost of building an entirely separate new dam at a site about 200 feet down stream of the old one. This new dam was built to the design of John S. Eastwood, of San Francisco, in the year 1911. It is a "multiple arch" dam of concrete, somewhat similar in type to those depicted in Figs. 9, 10, 11 of this chapter. It has 10 arches supported by 11 buttresses, the latter being 32 feet apart, centre to centre. The dam is 91.5 feet high above foundations and 350 feet long at crest. The buttresses are 18 inches wide at top and battered 1/4 down to base, they are sloped at 1/4 on the down-stream side and at 3/4 on the up-stream face.

The interesting old Bear Valley Dam is now submerged in the lake formed by the higher new dam of that name, which is matter for professional sadness. Fig. 15 reproduces its profile, together with stress-diagrams drawn by Wegmann and by Schuyler, respectively, which are based on

There have been two other high masonry dams in the world, which, though perfectly stable, have been treated as ignominiously as the Old Bear Valley Dam through the timidity of the local authorities. These are

(2) The Zola Dam, near Marseilles, 120 feet high, 41 6 feet thick at base.

(3) The Rellenu Dam, in Catalonia, Spain, 100 feet high, 25 feet at base.

When the storage of (2) proved insufficient the Marseillais built a concrete canal, 30 miles long, for supplementary water supply, rather than face the problem of building up the old dam higher. And similarly, when the supply of the Rellenu Dam, with base thickness only quarter of its height, needed augmentation, the Catalans, like the Californians, built a new and higher dam, entirely separate and down stream of the old one. These were all horizontally arched dams, and from the point of view of engineering science it seems regrettable that one or other of them was not increased in height, without increase of base-thickness with a view to the extension of human knowledge.

(EE) Par (10), Fig. 2 - The Pathfinder Dam

This was built in 1909-10, in a granite canyon, only 80 feet wide at bottom, 180 feet at top and 190 feet deep. Storage capacity 326,700 million gallons (U.S.A.) for irrigation, catchment area, 10,500 square miles. Minimum flow, 400 cusecs, maximum, 13,000 cusecs, annual run-off 12 million acre-feet, length of crest, 425 feet, maximum height 210 feet, top thickness of dam, 10 feet, bottom thickness, 94 feet, up-stream face battered 25 per cent. Calculations of design were based on the assumption that it would rely for stability on horizontal-arch action.
of a flat deck demands considerable reinforcement, as well as frequent supports

(30) An example of a small work in type D is given in Fig 12 of the Schuylerville Weir, while an alternative design in type C has been prepared in Fig 13 and 13a. The arrangement is similar to the last example (Fig 9), except that the piers are hollow. No doubt a wider span than 20 feet would give better results.

The comparative quantities per foot run are as follows —

Fig 12 Reinforced concrete 215 cubic feet per foot run
Fig 13 Plain concrete 178 " " "

This is considerably in favour of type C.

On the other hand, a direct overfall is provided in the last, not a rollway although the direct overfall is considered the better style, barring ice floes.*

(31) Another much larger section is given in Fig 14, that of the Ellsworth Weir. This work is of the same height as Fig 10, which was designedly made so for the sake of comparison.

The comparative quantities per foot run of these two can now be set out

Fig 14 Reinforced concrete, 11,000 cubic feet per 15-foot bay, equivalent to 733 cubic feet per foot run.

Fig 10, as by par. (27), 800 cubic feet per foot run (with S raised to 10 tons).

The advantage in actual quantity of concrete lies with Fig 14, but when the cost of the steel, which amounts to 8½ tons per 15-foot bay, together with the extra expense involved in construction and in the quality of the concrete, is taken into consideration, the advantage will be with the arched type.

Editor's Notes

(E) Par (9), Fig 1 Stresses in Arched Dams

The old Bear Valley Dam, of Redlands (Cal., U.S.A.), which is depicted in Fig 1 was built in the year 1884 for the syndicate of a local irrigation enterprise. Its total height above foundations is 64 feet, and it was designed with a base thickness of 20 feet, but (as the story goes) a crisis of financial stringency arose after the dam had been built up 16 feet only, and the engineer was faced with the alternatives of either abandoning the project or of building the dam from stream-bed level, upwards, to a much slenderer section than he would otherwise have considered advisable. Hence the curious appearance of the profile. The dam was curved in plan to a radius of 335 feet and its arc was 300 feet long at top. It stored 1,742 million cubic feet of water for the irrigation of the lovely and productive orange groves of Redlands. The desirability of storing larger water supplies for extensions of these orchards led to a project for a larger reservoir formed by a higher dam. The existing dam had shown no sign of weakness, but the engineers were afraid to tempt Providence by building it up higher. They

* But the direct overfall will require a rock soil to resist the force of the falling water. It is not so necessary in the Fig 12 type — Ed
prism of water 4 metres in length. The depth being 4.75 metres, the total pressure will be the area of the triangle of water pressure, which is \(\frac{h^2}{2} \) multiplied by the length and by \(\alpha \) the weight of a cubic metre of water or \(\frac{\alpha h^2}{2} \times l \). Taking \(\alpha \) as equal to 1 ton, which is very nearly, we have
\[
r = \left(\frac{4.75}{2} \right)^2 \times 4 = 43.1 \text{ tons}
\]

Now the cubical contents of one pier with superstructure lying to the right of the grooves is estimated at 60 cubic metres, the weight of which, taking 1.75 for specific gravity of the brickwork, will be \(1 \times 60 \times 1.75 = 105 \text{ tons} \). The portion of the pier up stream of the grooves has been omitted from consideration as it lies beyond the plane of pressure and is subjected to flotation. Strictly it should have been included in the count.

Fig. 1a is the force polygon. The incidence of the resultant \(R \), on the base line, is almost exactly at the outer one-third division of the base. If it fell without any extent, tension would be set up at the opposite toe, to avoid which the pier would have to be lengthened. The vertical line \(N \) in Fig. 1a measures the intensity of unit pressure on the masonry at the intersection of \(R \) and equals \(127.5 \) tons, which being situated at two-thirds the length of the pier, the maximum at the toe will be
\[
\frac{N}{b} \times 2 = \frac{127.5}{6.5} \times 2 = 40 \text{ tons per square metre nearly (inde par (8) Chap II)}
\]
or as a square metre equals 1075 feet the pressure per foot square will be
\[
\frac{40}{1075} = 0.037 \text{ tons}
\]
This is nearly double the safe pressure for ordinary soil. This calculation in the case of large spans with a greater head of water in the necessary, as not only may the pier be in tension at the heel but the pressure on foundations or floor may be excessive necessitating a lengthening of the pier down stream to increase its bearing surface.

(4) The thickness of piers is dependent on the weight carried and consequently is best expressed as some function of the span. The depth of water regulating the height of the piers is likewise a factor which must not be disregarded and further the allowable pressure on the foundation, though this latter can be arranged for by widening the pier foundation below the level of the floor base. The thickness may be generally taken as not under
\(\sqrt{S} \) or to vary from \(35S \) as a maximum to \(25S \) as a minimum for spans from 10 to 25 feet. The greater the span the less fractional proportion required for the pier. Thus as in Fig 1 the width of the pier is \(33S \). For a span of 24 feet under similar conditions the same fraction would give a width to the pier of 8 feet which is excessive 6 feet being a better proportion.

5) Until recently 25 feet used to be regarded as about the outside limit of workable vents for weir sluices and similar works whose functions are limited to partial regulation and in modern practice the least width of vent is hardly under 10 feet. Since the invention of the Stoney pattern of live roller gate the economical limit of width has risen to 60 feet or even higher. For culvert heads subjected to a considerable head of water the thickness of the piers should be \(4S \).

6) One quite modern example of regulating works viz. the Assut regulators a section is produced in Fig 2.

![Diagram](image)

The piers in this work are 2 metres in width to spans of 5 metres giving a ratio of \(4S \).

7) With regard to lateral pressure it is deemed that an extreme length of 6 metres is the outside exposed to this force. The values of \(r \) and \(r_k \) in this case will therefore be \(\frac{1}{2} \) of the former values if remaining the same. These lengths are projected on to an enlarged section of the pier in Fig 2a. The final resultant falls just at the pier toe.

8) In the original design the piers were carried on circular wells of brickwork sunk in the sand. The width of these was only 2.3 metres so that except in length the bearing surface on the sand was not diminished but neglecting the weight of the wells themselves and also the skin friction
the load on the actual base would not be less than 2 tons. The modification of the original design actually executed is shown in Fig 2. Mass concrete of one depth throughout of 3 metres enclosed in iron sheet piling having been substituted for a shallower floor and well foundations under the piers.

(9) When a pier rests on a mass foundation of this description the load is gradually spread over a larger area and can be assumed with safety to splay out on each side in correspondence with that usually given to footings at a slope of \(\frac{1}{2} \) to 1.

Thus as shown dotted in Figs 2 and 2a the bearing width at the base of the foundation will be the thickness of the pier plus that of the foundation in both cases 2 + 3 = 5 metres. The same widening of effective bearing area may be conceived to occur at each end of the piers increasing the effective length from 13\(\frac{1}{2} \) to 16\(\frac{1}{2} \) metres.

The vertical load on the foundation is 358 cubic metres to which must be added the contents below the floor or a piece \(15 \times 5 \times 3 = 225 \) cubic metres submerged i.e. equivalent to 112 cubic metres (with \(p = 2 \)). The total will then be 358 + 112 = 470 cubic metres = 940 tons.

This load is distributed over a base of 16\(\frac{1}{2} \) metres long and 5 metres wide consequently the pressure per square metre will be \(\frac{940}{825} = 11 \frac{4}{20} \text{ tons} \) and reduced to per square foot \(\frac{11 \frac{4}{20}}{10 \frac{76}{100}} = 10 \text{ tons} \). In the case of the actual 5 metre spans the load will be less by a length of arching of 1 metre i.e. by some \(1^2 \) or 15 cubic metres of masonry which would clearly make no appreciable difference.

(10) We gather from this that a load of not more than 1 ton per square foot is admissible on a foundation of Nile silt. On compact sand or hard clay a unit load of 2 tons is quite allowable. On compact gravel blue clay or soft rock 4 tons is permissible.

In the Nadrai Aqueduct Fig. 3 Chap XI the pressure at the bottom of the well foundations was limited to 4* tons and this on pure sand no allowance as usual having been made for skin friction which latter was ascertained by direct experiment to range from 6 to 12 cwt per square foot of surface. On the Hawkesbury Bridge foundations also in sand 4\(\frac{1}{2} \) tons was the limit pressure. In some works on clay it amounts to over 8 tons per square foot. Sand if protected from erosion is as good a foundation as any when of great depth. If however the sand is only a thin layer overlying a clay bed the latter should be reached by protective curtain walls or sheet piling as otherwise the reduced frictional stability promoted by contact with a smooth hard surface might cause the sand layer to be washed out under hydrostatic pressure.

* But see Ed for a footnote to par (47) Chap I. At a depth of 50 feet the resistance of the same soil to pressure could be about 9 tons per square foot greater than at ground surface — Ed.
or to vary from $3S$ as a maximum to $25S$ as a minimum for spans from 10 to 25 feet. The greater the span the less fractional proportion required for the pier. Thus as in Fig. 1 the width of the pier is $33S$. For a span of 24 feet under similar conditions the same fraction would give a width to the pier of 8 feet which is excessive; 6 feet being a better proportion.

5 Until recently 25 feet used to be regarded as about the outside limit of workable vents for weir sluices and similar works whose functions are limited to partial regulation and in modern practice the least width of vent is hardly under 10 feet. Since the invention of the Stoney pattern of live roller gear the economical limit of width has risen to 60 feet or even higher. For canal heads subjected to a considerable head of water the thickness of the piers should be $4S$.

6 Of one quite modern example of regulating works viz. the Assiut regulators a section is produced in Fig. 2d. The piers in this work are 2 metres in width to spans of 5 metres giving a ratio of $4S$.

7 With regard to lateral pressure it is deemed that an extreme length of 6 metres is the outside exposed to this force. The values of r and r_1 in this case will therefore be n of the former values if remaining the same. These lengths are projected on to an enlarged section of the pier in Fig. 2d. The final resultant falls just at the pier toe.

8 In the original design the piers were carried on circular wells of brickwork sunk in the sand. The width of these was only 2.3 metres so that except in length the bearing surface on the sand was not diminished but neglecting the weight of the wells themselves and also the skin friction
the load on the actual base would not be less than 2 tons. The modification of the original design, actually executed, is shown in Fig. 2, mass concrete of one depth throughout of 3 metres enclosed in iron sheet piling having been substituted for a shallower floor and well foundations under the piers.

(9) When a pier rests on a mass foundation of this description the load is gradually spread over a larger area, and can be assumed with safety to sply out on each side in correspondence with that usually given to footings at a slope of \(\frac{1}{4} \) to 1.

Thus as shown dotted in Figs 2, 2a, the bearing width at the base of the foundation will be the thickness of the pier plus that of the foundation in both cases \(3 + 3 = 5 \) metres. The same widening of effective bearing area may be conceived to occur at each end of the piers, increasing the effective length from \(13\frac{1}{3} \) to \(16\frac{1}{2} \) metres.

The vertical load on the foundation is 358 cubic metres, to which must be added the contents below the floor or a piece \(15 \times 5 \times 3 = 225 \) cubic metres submerged, i.e., equivalent to \(112 \) cubic metres (with \(\rho = 2 \)). The total will then be \(358 + 112 = 470 \) cubic metres = 940 tons.

This load is distributed over a base of \(16\frac{1}{2} \) metres long and 5 metres wide, consequently the pressure per square metre will be \(\frac{940}{82.5} = 11.4 \) tons, and reduced to per square foot \(\frac{11.4}{10.76} = 1.06 \) tons in the case of the actual 5-metre spans the load will be less by a length of arching of 1 metre, i.e., by some 12 or 15 cubic metres of masonry, which would clearly make no appreciable difference.

(10) We gather from this that a load of not more than 1 ton per square foot is admissible on a foundation of Nile silt. On compact sand or hard clay a unit load of 2 tons is quite allowable. On compact gravel, blue clay, or soft rock 4 tons is permissible.

In the Nadrâî Aqueduct Fig 3 Chap XI the pressure at the bottom of the well foundations was limited to 4 * tons and thus on pure sand no allowance as usual, having been made for skin friction which latter was ascertained by direct experiment to range from 6 to 1\(\frac{1}{2} \) cwt per square foot of surface. On the Hawkesbury Bridge foundations also in sand \(4\frac{1}{2} \) tons was the limit pressure. In some works on clay it amounts to over 8 tons per square foot. Sand, if protected from erosion as good a foundation as any, when of great depth if however the sand is only a thin layer overlying a clay bed, the latter should be reached by protective curtain walls or sheet piling as otherwise the reduced frictional stability promoted by contact with a smooth hard surface might cause the sand layer to be washed out under hydrostatic pressure.

* But see Editor's footnote to par (47) Chap I. At a depth of 50 feet the resistance of the same soil to pressure would be about 9 tons per square foot greater than at ground surface. — Ed.
(11) If the sand foundation is efficiently protected by curtain walls or sheet piling, no object is gained by deep foundations, and the same would apply to hard clay in cutting. In the case of large spans where the floor is not sufficiently deep to afford the requisite support to the piers, the foundations of the piers must be carried lower. A good example of how this is effected in mass foundations is given in Fig. 3 of the pier bases of the Budki Superpassage.

The required depth, as we have already seen, should be such that, added to the thickness of the pier, a base width is provided suitable to the limiting pressure on the subsoil.

In regulating works, thick floors to resist the head of water are a necessity which is now thoroughly recognised, and the thickness given is often more than sufficient for pier foundations without anything supplementary in the way of special foundations being supplied underneath the piers.

In the Budki Superpassage the pressure due to the weight of one span, plus that of 6 feet of water carried, is 2½ tons per square foot at the base of the piers and 1½ tons on the ground. The subsoil is hard, firm clay, 8 feet thick, overlying water-bearing sand. Safe load, 2 tons per square foot.

(12) The proportional thickness of piers for aqueducts varies considerably in different examples, as below:

<table>
<thead>
<tr>
<th>Chap. XI</th>
<th>Fig</th>
<th>Span</th>
<th>Thickness</th>
<th>Ratio</th>
<th>\sqrt{x}</th>
<th>Radius (r)</th>
<th>$r + 0.8 \sqrt{x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budki</td>
<td>8</td>
<td>30</td>
<td>6 ft</td>
<td>25</td>
<td>5.4</td>
<td>30</td>
<td>5.4</td>
</tr>
<tr>
<td>Thora Nala</td>
<td>1</td>
<td>30</td>
<td>5 ft</td>
<td>665</td>
<td>5.4</td>
<td>20</td>
<td>4.6</td>
</tr>
<tr>
<td>Kerai</td>
<td>2</td>
<td>20</td>
<td>4 ft</td>
<td>25</td>
<td>4.4</td>
<td>14</td>
<td>4.0</td>
</tr>
<tr>
<td>Gunnerum</td>
<td>4</td>
<td>40</td>
<td>6 ft</td>
<td>155</td>
<td>6.3</td>
<td>33</td>
<td>5.7</td>
</tr>
<tr>
<td>Kali Nadi</td>
<td>3</td>
<td>60</td>
<td>7 ft</td>
<td>117</td>
<td>7.75</td>
<td>60</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Aqueduct piers, like those of large span bridges, do not require to be vertically sided, as is necessarily the case in regulators, where draw-gates in grooves are used, and should always be constructed with either straight or curved battering sides, in order to increase the base width. There is, however, a limit to the batter adopted, as the water-way is thereby diminished. This subject is further treated in Chap. XI.

* The two last columns of this table have been added by the Editor of this edition for brickwork. See Chap. XI, par. (4)
(13) The horizontal thrust of an arch is entirely dependent on the weight of that portion of the half arch and its load lying between the crown and the point of rupture. Whatever weight lies between the point of rupture and the abutment does not affect the value of the thrust, as it really forms a projecting part of the abutment.

In every arch, of whatever profile, elliptical, segmental or semicircular, the point of rupture is that point where the internal line of pressure tends to go outside the middle third of the arch ring, and so produce tension in the arch. Further, at this point, compared with others, the horizontal stress is at a maximum.

The kind of arch most commonly used in Indian irrigation works is a circular arch forming a segment of 90 degrees or of 60 degrees, in which the point of rupture is at the springing. The 90 degrees arch is that of least thrust, but the 60 degrees arch has less rise," which is sometimes advantageous.

The thrust of an arch \(P \) loaded to a horizontal line above the crown is obtained by the following formula with great exactitude:

\[
P = w rt, \tag{1}
\]

in which \(w \) is the unit weight of the material of the arch ring and filling, the latter reduced to an equivalent area of the material of the arch ring, \(r \) the radius of the intrados and \(t \) the vertical height of reduced terrain line above the intrados at the crown.

(14) An example illustrative of the arch thrust on abutments is given in Fig. 4, which represents the segmental half arch of an aqueduct.

The
spandrel is built up to a horizontal line 6 inches above crown of arch. Above this lies 5 feet of water. This water area is reduced by dividing it by \(\rho \) the specific gravity of the material in the arch and in this case \(\rho \) is assumed as 2. The distance \(ae \) is thus the \(t \) in the formula and equals 5 feet. As the arch and abutment are considered to be of the same specific gravity, \(W \) which equals \(t \rho \) is a common factor which can be eliminated in the graphical process. The horizontal thrust will then be represented by \(t \rho \), or by \(14.5 \times 5 = 72.5 \) and the weights of other parts by their areas. In Fig 4a, \(ac = P = 72.5 \) and the load line \(H_1 \) or \(ab \) equals the area of the half arch \(\text{viz} \), \(60 \) the resultant being \(be \) or \(R \). In the profile Fig 4 the position of \(P \) must be determined with reference not only to its own incidence in the arch ring at the crown but with reference to that of \(R \) in the arch ring in the springing. Both lines must fall within the middle third of the ring and that position of \(P \) which ensures the most axial incidence of both \(R \) and \(P \) is the correct one.

We now come to the composition of \(R \) with the weight of the abutment, which is \(H_1 \) on the load line representing the area of the trapezoid \(AO \). The resultant \(\lambda \) falls just within the base.

The incidence should be somewhat more recessed within the toe hence the abutment requires thickening at the base.

Thickness of Abutments

15) The thickness of an abutment at the spring line of an arch must be such as to ensure against failure by sliding due to the horizontal thrust of the arch. A suitable width is obtained by use of the following empirical formula from Trautwine:

\[
I = 2r + \frac{J}{2} + 2
\]

in which \(r \) is the radius of arch and \(V \) the versed sine.

In Fig 4 the thickness is made in accordance with the formula being
\[
2 \times 14.5 + 1 \times 4 + 2 = 53 \text{ feet}
\]

The rear slope is given by another formula—

Ratio of slope equals \(0.2S \) horizontal to \(51 \) vertical

or \(\frac{0.2S}{5V} \)

The base width thus obtained will be just sufficient not counting in the resistance of the earth backing. Under normal conditions of loading these formulas would answer well but in the case in point the heavy load of water carried would require an increase in the thickness proportional to the depth carried. The increase adopted will be \(2d \) or one fifth the depth of water, and the formula would become for aqueducts—

\[
I = 2r + \frac{J}{2} + 2 + 2d
\]

The increased thickness is shown by a dotted line in the profile Fig 4.

In these calculations the abutment is assumed of the same specific gravity as that of the arch and loading.
(16) The effect of the earth backing is shown in Figs. 4a and 4b. In Fig. 4b, r or the half width of the triangle of earth pressure ADB is obtained by the process frequently employed in Chap. I. the specific gravity of the earth being taken as the same as that of the wall.

The half width r_1 of the trapezoid of pressure AB multiplied by its height gives its area and is equal to $4.75 \times 21.5 = 102$. By this quantity being set off in Fig. 4a from the extremity of the load line in its proper direction we obtain R_1 on Figs. 4a and 4b.

If the earth backing has three fourths the unit weight of the masonry, the length of r_1 in Fig. 4a will be three fourths less or 76 and the corresponding result in R in both figures. In this and in the two preceding paragraphs the reader should note and distinguish between the letter (r) denoting radius of arch and the same letter denoting a force.

Thickness of Arches

(17) There are several empirical formulas giving values of the crown thickness of arches of which the simplest and best is that in Molesworth's Pocket book of

$$ t = n \sqrt{r} \text{ or } 4 \sqrt{r} \quad (3)$$

n is a multiplier varying from 4 upwards.

For ordinary bridges a value of 4 will be ample for the multiplier but this should be increased in the case of aqueducts up to 5 in proportion to depth of water carried (vide Chap. IV) and the formula will then become

$$ t = 5 \sqrt{r} \quad (3a)$$

This is the thickness adopted in Fig. 4.

In large arches the thickness should increase proportionately with that of the thrust from the crown to the springing. This increase can be obtained graphically as shown in Fig. 4. Here ab is a radial equal to the thickness of the crown, the vertical be will then be the correct increased thickness at this point. The span in this particular instance being small no increase is deemed necessary. Here again the reader is requested to avoid the confusion involved in the lettering $a\ b\ c$ used in Figs. 4, 4a to denote different elements of the case illustrated.

Buttresses

(18) Economy can sometimes be effected in the section of lofty abutments or long retaining walls by the use of buttresses. Their effect on the stability of a retaining wall or abutment is obtained as follows:—The wall should be considered as having a base width equal to the normal thickness at base plus the projection of the buttress but formed of two materials of different specific gravities. The solid portion being of the actual specific gravity of the masonry, and the area behind which is partly solid buttresses and partly open space should be considered as of a lighter specific gravity equivalent to that of a material occupying the whole of this rear area but weighing no more than the buttresses themselves.
spandrel is built up to a horizontal line 6 inches above crown of arch. Above this lies 5 feet of water. This water area is reduced by dividing it by \(\rho \) the specific gravity of the material in the arch, and in this case \(\rho \) is assumed as 2. The distance \(ac \) is thus the \(t \) in the formula and equals 5 feet. As the arch and abutment are considered to be of the same specific gravity, \(W \), which equals \(\rho \cdot V \), is a common factor which can be eliminated in the graphical process. The horizontal thrust will then be represented by \(n \), or by \(14.5 \times 5 = 72.5 \), and the weights of other parts by their areas. In Fig 4 an \(ac = P = 72.5 \), and the load line \(W \), or \(ab \), equals the area of the half arch, viz., 60, the resultant being \(bc \) or \(R \). In the profile Fig 4, the position of \(P \) must be determined with reference not only to its own incidence in the arch ring at the crown, but with reference to that of \(R \) in the arch ring in the springing. Both lines must fall within the middle third of the ring, and that position of \(P \) which ensures the most axial incidence of both \(R \) and \(P \) is the correct one.

We now come to the composition of \(R \) with the weight of the abutment, which is \(W_4 \), on the load line representing the area of the trapezoid \(AO \). The resultant \(R_4 \) falls just within the base.

The incidence should be somewhat more recessed within the toe, hence the abutment requires thickening at the base.

Thickness of Abutments.

(15) The thickness of an abutment at the spring line of an arch must be such as to ensure against failure by sliding due to the horizontal thrust of the arch. A suitable width is obtained by use of the following empirical formula from ‘Trautwine’ —

\[
I = 2r + 1V + 2, \quad (2)
\]

in which \(r \) is the radius of arch and \(V \) the versed sine.

In Fig 4 the thickness is made in accordance with the formula, being \(2 \times 14.5 + 1 \times 4 + 2 = 53 \) feet. The rear slope is given by another formula —

\[
\text{Ratio of slope equals } \frac{0.25}{0.5} \text{ horizontal to } 5V \text{ vertical}
\]

or \(\frac{0.25}{0.5} \)

The base width thus obtained will be just sufficient, not counting in the assistance of the earth backing. Under normal conditions of loading these formulas would answer well, but in the case in point the heavy load of water carried would require an increase in the thickness proportional to the depth carried. The increase adopted will be \(2d \), or one-fifth the depth of water, and the formulas would become for aqueducts —

\[
I = 2r + 1V + 2 + 2d \ldots \ldots \ldots \ldots \ldots \quad (2a)
\]

The increased thickness is shown by a dotted line in the profile Fig 4.

In these calculations the abutment is assumed of the same specific gravity as that of the arch and loading.
(16) The effect of the earth backing is shown in Figs 4, 4a and 4b. In Fig 4b, r, or the half width of the triangle of earth pressure ADB, is obtained by the process frequently employed in Chap I, the specific gravity of the earth being taken as the same as that of the wall.

The half width \(r \) of the trapezoid of pressure \(A'B \), multiplied by its height gives its area, and is equal to \(4.75 \times 21.5 = 102 \). By this quantity being set off in Fig 4a from the extremity of the load line in its proper direction we obtain \(R \) on Figs 4a and 4.

If the earth backing has three-fourths the unit weight of the masonry, the length of \(r \) in Fig 4a will be three-fourths less or 76, and the corresponding resultant is \(R \) in both figures. In this, and in the two preceding paragraphs, the reader should note and distinguish between the letter \(r \) denoting radius of arch, and the same letter denoting a force.

Thickness of Arches.

(17) There are several empirical formulas giving values of the crown thickness of arches, of which the simplest and best is that in Molesworth's Pocket-book of

\[t = n \sqrt{r} \text{ or } 4 \sqrt{r} \]

\(n \) is a multiplier varying from 4 upwards.

For ordinary bridges a value of 4 will be ample for the multiplier, but this should be increased in the case of aqueducts up to 5 in proportion to depth of water carried (vide Chap. XI) and the formula will then become

\[t = 5 \sqrt{r} \]

This is the thickness adopted in Fig 4.

In large arches the thickness should increase proportionately with that of the thrust from the crown to the springing. This increase can be obtained graphically as shown in Fig 4. Here \(ab \) is a radial equal to the thickness of the crown, the vertical \(bc \) will then be the correct increased thickness at this point. The span in this particular instance being small no increase is deemed necessary. Here, again, the reader is requested to avoid the confusion involved in the lettering \(a, b, c \), used in Figs 4, 4a to denote different elements of the case illustrated.

Buttresses.

(18) Economy can sometimes be effected in the section of lofty abutments, or long retaining walls, by the use of buttresses, their effect on the stability of a retaining wall or abutment is obtained as follows. —The wall should be considered as having a base width equal to the normal thickness at base plus the projection of the buttress but formed of two materials of different specific gravities, the solid portion being of the actual specific gravity of the masonry, and the area behind, which is partly solid buttresses and partly open space, should be considered as of a lighter specific gravity equivalent to that of a material occupying the whole of this rear area, but weighing no more than the buttresses themselves.
The specific gravity of this portion will then be $\rho \times \frac{a^2}{A}$ in which a is the area of the solid portion viz of the projecting buttresses and A that of the whole space between a line forming the ends of the buttresses and the back of the wall from which they project.

Floors Thickness and Length

(19) Firstly Of Submerged River Weirs on Sand
The thickness of the floor is a matter dependent on the hydrostatic pressure to which the floor is subject owing to the porous nature of the sub-stratum. This is fully dealt with in Chap VI.

The formula given in Chap VI is

$$t = \frac{H - h}{\rho - 1}$$

for submerged aprons or floors in which H is the maximum statical head and h the loss of head due to percolation up to the beginning of the floor.

The width of submerged river weir aprons or floors on sand foundations is a function not only of the height of the permanent obstruction viz. that of the masonry weir wall but also of the quality of the river sand represented by the so termed coefficient c and is found by the following formula also given in Chap VI

$$W = 4e \sqrt[13]{H^5}$$

in which H^5 is the height of the shutter crest. For example if H^5 be 12 ft and the river coefficient be of class 2 that is if $e = 12$ the width would be

$$4 \times 12 \times 93 = 48 \times 96 = 46$$

feet nearly.

20 Secondly Canal Falls

The thickness of the floor of canal falls without a sun water cushion is

$$H + d$$

in which H is the height of the drop wall and d the depth of film. The height of the upper reach above crest. The width of floor should be $2(H + d)$. The same applies to escape falls.

(21) Thirdly Weir Sluices and other Partial Regulators on sand

The head to which a weir sluice is subjected being the same as that on the weir apron its floor could be made of the same length were it not for kinetic considerations, the rush of water through the sluices particularly when the river is high being very great. The decision is one for the judgment of the engineer on the facts of the case.

Of partial regulators a good example is that of the Assiut regulators. Although the water is over 30 feet in depth it is never required to be completely shut off so that the maximum hydrostatic pressure is due to a head of about 9 feet.

In this case the thickness of the floor is 10 feet.

* But see footnote to Chap VI par. (13) —Ed.
(22) Fourthly Head Regulators or Intakes

These works are sometimes subjected to great hydrostatic pressure Canal heads sometimes have to be entirely closed during the highest floods in the river to keep out excess of river silt. The Egyptian canal heads are partial Head Regulators.

If a Head Regulator is founded on good clay the floor thickness need not exceed $\sqrt{H_1}$ and the length be limited to 10 feet to 15 feet beyond the noses of the sluice piers.

(23) The system of providing water cushions to canal falls by lowering the floor below the bed of the channel down stream involves considerable extra expense in that the height of the weir and retaining walls in fact all the parts of the structure have to be increased by the depth of the cushions. In addition to this the difficulty of getting in the foundations in water bearing strata is greatly enhanced.

Editor's Notes

(Γ) Par (19) — The formula for floor thickness on a sand foundation which the author recommends seems to err on the side of excessive caution as the reader will probably agree when he notices that it leads the author in Chap. VII, par (11) to reckon that the floor of the Narora Weir Sluices ought to be 10 feet thick whereas they are only half that thickness and yet have never exhibited any weakness. Bearing in mind the fact that brick masonry or concrete when saturated with water is about 20 per cent heavier than when dry and bearing in mind also the transverse strength and power of resistance to shearing of a slab of such material we think that the factor (4/3) in the author's formula representing a factor of safety may well be omitted. A vertical drop fall on a sandy river bed is in any case a bad design. It has not been and is not likely to be adopted anywhere else in India except at Narora. Our rough rule is to make the floor thickness of brick masonry or concrete equal to about half the probable hydrostatic head of blow up pressure.

(ΓΓ) Par (23) — Strictly speaking such water cushions or cisterns below falls are useful chiefly in cases where the overfall is free or nearly so and where the water depth of the channel down stream is liable to be equal to or less than that of the channel up stream that is to say when the fall between water surfaces above and below the work is liable to be equal to or greater than the fall of the masonry work. In the case of drowned falls the force of the passing water is exerted less vertically and more in the longitudinally forward direction in such cases therefore although a cistern may do some good in retarding velocity and force of current that purpose may be served better by lining the channel for some distance down stream by light but very rough masonry or pitching. As a rough rule we would suggest that when the fall between water surfaces is less than one fourth of the water depth of the channel down stream no cistern need be designed in the masonry work.
CHAPTER V

HYDRAULIC FORMULAS

(1) The velocity of a jet issuing from an orifice under the head h is

$$c\sqrt{2gh}$$ \hspace{1cm} (1)

Fig. 1 represents a sluice opening in a dam with a free outlet \(v \) \(e \) the level of the tail water is below the orifice. In this case \(H \) is the mean head or depth of centre of sluice way below surface \(h_1 \) and \(h_2 \) are the depths to the top and bottom of the orifice \(l \) the width of the orifice whose depth is \(h_2 - h_1 \) or \(d \). Then the discharge will be

$$Q = c\sqrt{2g} \left(h_2 \frac{v}{h_1} - h_1 \frac{v}{h_1} \right)$$ \hspace{1cm} (2)

as \(\sqrt{\gamma g} = 8.025 \) and \(\sqrt{2g} = 5.35 \) the formula can be expressed as

$$Q = c\sqrt{5.35} \left(h_2 \sqrt{h_2} - h_1 \sqrt{h_1} \right)$$ \hspace{1cm} (2a)

When \(H \) is large compared with \(d \)

$$Q = (\text{approximately}) \ cA \sqrt{2gH} \text{ or } cA \times 8.025 \sqrt{H}$$ \hspace{1cm} (3)

\(A \) being the area of the orifice or \(d \times l \)

(2) In the example given in Fig. 1, \(H = 20 \), \(h_2 = 22 \), \(h_1 = 18 \), \(l = 4 \) and \(c = 66 \)

whence \(Q = 66 \times 4 \times 5.35 \left(22 \times 4.69 - 18 \times 4.242 \right) \) cubic feet

\[= 378.8 \text{ cubic feet per second by formula (2a)} \]

The discharge by formula (3) will be

\[66 \times 16 \times 8.025 \times 4.472 = 379 \text{ cubic feet per second} \]

Hence in this case the shorter formula which always gives results somewhat in excess of (2) can well be used.

The velocity of the current through the orifice will be according to (2a)

$$c \times 5.35 \left(h_2 \sqrt{h_2} - h_1 \sqrt{h_1} \right)$$

or according to (3) \(c\sqrt{\gamma gH} \) In most cases considering that the suitable value of the coefficient \(c \) is by no means known with anything like absolute
 precision it would be a useless refinement to adopt the longer and more accurate formula (2) or (2a)

(3) Fig. 2 represents a similar case in which the sluice or orifice is submerged. Here the head H is the difference in level between the head and tail water.

The exact formula for the discharge through a submerged orifice is

$$Q = c_l S_5 \left((H \sqrt{H} - h_1 \sqrt{h_1}) + \frac{3}{4} \sqrt{H} (h_2 - H) \right)$$ \hspace{1cm} (4)

In Fig. 2 $H = 16$, h_1 and h being as before, 18 and 22 feet

whence

$$Q = 66 \times 4 \times 5 \times 35 \left((16 \times 4 - 18 \times 4 \times 243) + \frac{3}{4} (4 \times 6) \right)$$

$$= 14 \times 24 \left(-1237 + 36 \right) = 33375 \text{ cubic feet}$$

The approximate and more commonly used formula for discharge through a submerged orifice is the same as in (3) viz $Q = c A \sqrt{2gH}$.

In this instance $Q = 66 \times 16 \times 8 025 \times 4 = 33898$ cubic feet the difference being 1\% in excess of the last. However as already stated in the present unsatisfactory state of hydraulic science the coefficients adopted are only approximate so that the shorter formula is quite good enough for practical purposes.

In the above cases the same coefficient 66 has been used for both free and submerged orifices. As will be seen later the coefficient is higher when the orifice is submerged.

(4) In the two cases cited the question of the velocity of approach of the current if any has not been considered.

Where the section of the orifice is not very small compared with that of the channel of supply this factor should be taken into account. The velocity of approach can be expressed in terms of the head h expended in producing it as follows,

$$h = \frac{V^2}{2g} = 0.155 V^2$$

in this V is the mean velocity of the current in the channel of approach. If observed surface velocity (v) only is known the mean velocity may be assumed to be $V = 7 v$ or $8 v$. A more accurate formula is given in par. (13). The correct theoretical influence of the velocity
of approach is best obtained by modifying the coefficient so as to include it as follows —

\[c_1 = C \sqrt{1 + \frac{h}{H}} \]

(5)

This obviates two more formulas to replace (2) and (3)

Where the depth of the orifice is small as regards the head of water, the following will give sufficiently accurate results viz —

\[Q = cA \sqrt{2g (H + h)} \]

(6)

In this the head due to velocity of approach is simply added to the actual head of water which is not strictly accurate

(5) For example in Fig. 1 supposing the mean velocity of the channel which supplies the sluice to be 3 feet per second then the modified coefficient will become \(c_1 = 66 \sqrt{1 \times \frac{h}{20}} \) \(h \), or the head due to velocity of approach is as we have seen equal to \(0.155 \times 9 = 1.395 \) whence \(c_1 = 66 \sqrt{0.007} = 66.2 \) The discharge will be increased in the first case of free outfall from \(378.8 \) cubic feet to \(378.8 \times \frac{662}{660} \) or to \(379.95 \) cubic feet per second

If formula (6) be used the discharge with free outfall will be \(66 \times 16 \times 8.025 \sqrt{1.395} = 386.31 \) With submerged orifice \(H = 16 \) and \(Q = 66 \times 16 \times 8.025 \sqrt{1.395} = 340.45 \) cubic feet

These examples are useful as showing the discrepancy between the discharges worked out by the long or by the short formulas, and also showing that when \(H \) in either case is below \(d \) (\(d \) being the depth of the orifice or sluice) the longer formulas (2) and (4) should be used instead of (3) and (6)

(6) In an orifice or sluice way contraction in the body of water passing through occurs on all four sides. The section of the fluid is thus reduced below that of the opening and further the velocity of the water passing is decreased owing to the friction induced at the sides of the orifice below what it should be according to theory. A reducing coefficient \(C \) has therefore to be used to include both these factors. The exact determination of this coefficient is a matter of great importance. For a circular orifice with thin sides as a hole cut in a thin plate the average coefficient obtained by experiment is about 62. As regards rectangular openings the value of \(C \) varies with the shape of the orifice as it has been found that an oblong hole gives a higher discharge than a square one of the same dimensions under the same head. This proves that the end contractions of the vertical sides have a greater effect than those at the top and bottom of the orifice. Hence a wide shallow orifice gives a higher discharge than a narrow and

* When velocity of approach is less than 4 feet per second the head due thereto is usually negligible — L.D
The recognition of this fact should influence the design of sluice ways where it is desirable to reduce the head of water which must form above the sluice so as to overcome the frictional resistance of the current in its passage. Cases illustrative of this point are noticed in Chap. XI which deals with the design of masonry syphons.

(7) The coefficient of discharge through a submerged orifice is always higher than that with a free outfall. The same applies but in a more marked degree to cases of overfalls where there is no contraction on the upper surface. Unfortunately no experiments have been made to ascertain the exact value of the coefficient under various values of \(H \) with which it naturally should vary. In The Principles of Waterworks Engineering by the coefficient for a submerged oblong orifice is stated to be experimentally \(67 \). The ordinary coefficient applicable to small square openings is \(65 \). In this particular case the opening is 2 feet \(\times \) 6 inches \(t e. \) \(m \) or the multiplier \(1.05 \) whence for free outfall \(c = 65 \times 1.05 \)

Deduction from these data would make the coefficient for a submerged orifice under moderate head \(\frac{65 \times 67}{65} = 639 \) or say 64.

In nearly all practical cases the orifice is submerged which accounts for the high range of many coefficients which have been obtained by testing the discharge through openings on a large scale on actual works and not on the minute dimensions of orifices and head from which the original coefficients were deduced.

The rise of the coefficient due to submergence of an orifice shows that up to a certain point the rise in the back water has no influence on the discharge which is the same as if the orifice were clear. There are no experiments which fix this limit but it can safely be assumed at 1d.

(8) The following are the coefficients applicable to different classes of orifices or sluices:

1. Orifice in a thin plate or small iron sluice gate not at base of reservoir = 62
 Same submerged = 64

2. Sluices without side walls as tank sluices which open into wide culverts or discharge direct into the lower basin through a dam = 62 to 66

3. Sluices situated at bottom of a reservoir is many tank sluices are = 8

4. Narrow bridge openings bottom sluices in dam = 8 to 9

5. Large sluice openings with side walls = 9 to 94

6. Wide openings with bed level with that of the reservoir \(t e. \) such as wide bridge openings with pointed piers = 96

(9) From the foregoing it will be seen that the value of the coefficient is affected firstly by the size of the opening secondly by the provision of
of approach is best obtained by modifying the coefficient so as to include it, as follows —

\[c_1 = c \sqrt{1 + \frac{h}{H}} \]

(5)

This obviates two more formulas to replace (2) and (3)

Where the depth of the orifice is small as regards the head of water, the following will give sufficiently accurate results, viz —

\[Q = cA \sqrt{2g (H + h)} \]

(6)

In this the head due to velocity of approach is simply added to the actual head of water, which is not strictly accurate

(5) For example in Fig 1, supposing the mean velocity of the channel which supplies the sluice to be 3 feet per second, then the modified coefficient will become \(c_1 = 66 \sqrt{1 \times \frac{h}{20}} \). Now \(h \), or the head due to velocity of approach is as we have seen, equal to \(0.155 \times 9 = 1.395 \), whence \(c_1 = 66 \sqrt{1.007} = 662 \). The discharge will be increased in the first case of free outfall from \(378.8 \) cubic feet to \(378.8 \times \frac{662}{660} \) or to \(379.95 \) cubic feet per second *

If formula (6) be used, the discharge with free outfall will be \(66 \times 16 \times 8.025 \sqrt{16 \times 1395} = 380.31 \). With submerged orifice, \(H = 16 \) and \(Q = 66 \times 16 \times 8.025 \times 16 \times 1395 = 340.45 \) cubic feet.

These examples are useful as showing the discrepancy between the long or by the short formulas, and also show that when \(H \) in either case is below \(\frac{d}{5} \) (\(d \) being the depth of the orifice or sluice), the longer formulas (2) and (4) should be used instead of (3) and

(6) In an orifice or sluice way, contraction in the body of water passing through occurs on all four sides. The section of the fluid is thus reduced below that of the opening, and further the velocity of the water passing decreased owing to the friction induced at the sides of the orifice, below what it should be according to theory. A reducing coefficient \(c \) has therefore to be used to include both these factors. The exact determination of this coefficient is a matter of great importance. For a circular orifice with thin sides as a hole cut in a thin plate the average coefficient obtained by experiment is about 62. As regards rectangular openings, the value of \(c \) varies with the shape of the orifice, as it has been found that an oblong hole gives a higher discharge than a square one of the same dimensions under the same head. This proves that the end contractions of the vertical sides have a greater effect than those at the top and bottom of the orifice. Hence a wide shallow orifice gives a higher discharge than a narrow and

* When velocity of approach is less than 4 feet per second the head due thereto is usually negligible — LB
except possibly in the case of a very small value of \(d \), discharging over a
thin plank. A coefficient varying with the depth of film would probably be
more strictly in accordance with experiments. These experiments have,
however, been undertaken on a very small scale, and a coefficient which may
be truly applicable in cases of small depths of 2 feet or 3 feet passing over
a narrow plank, the weir opening being likewise a small proportion of the
normal width of the supply channel, will not prove so under actual practical
conditions.

The coefficient undoubtedly does decrease to some extent in inverse pro-
portion with the depth of film, but on the other hand with a wide flat-topped
masonry weir the increment is in the opposite sense, the fall in one case
balancing to a greater or less degree the rise in the other, so that, pending
further exhaustive experiments on a proper large scale the adoption of one
value of \(c \) of 623 for all depths appears sufficiently accurate for practical
purposes. The letter \(Q \) signifies either the whole discharge or in the case
of a weir, that per foot run, the absence of \(A \) or of \(l \) denoting which is
meant.

Besides which, this value is recognised generally as suitable, while that of
Castel's viz., 666 is not. In the Madras Manual, the formula having a
still lower value of \(c \), viz., 577, whence \(Q = 3 \frac{1}{A} \sqrt{d} \), is adopted for a free
call. 'Per foot run' is sometimes designated unit discharge.

(13) In Fig. 3 the depth of film is shown as 4 feet. The discharge per
foot run of weir will then be \(Q = 3 \times 333 \times 4 \times \frac{1}{4} = 2667 \) cubic feet.

In this, the velocity of approach, which may have to be considered,
has been neglected.

The easiest method is to modify the coefficient \(c \), using formula (8). Let
\(h \) equal height due to the mean velocity of approach or \(0155 \) \(V^2 \) then
this modified coefficient \(c_1 \) is obtained by use of the following formula —

\[
 c_1 = c \times \left(\frac{1 + \frac{h}{d}}{\frac{1}{d}} \right) \left(\frac{h}{d} \right)^2
\]

(9)

For example, supposing in the case already cited the mean velocity of
the current to be \(3 \frac{1}{4} \) feet per second, then \(h = 0155 \times (3.5)^2 \times \frac{1}{4} \) feet, and
the multiplier of the coefficient with \(d = 4 \) and \(h = 19 \) is \(0062 \) and the
discharge modified to include effect of velocity of approach will be \(2666 \times \frac{1}{d} \times 0062 = 2832 \) cubic feet per foot run. The value (0155) is \(\frac{1}{2} \times \frac{1}{64.4} \).

(16) Fig. 4 represents a submerged or drowned weir. As in the case of
a submerged orifice the head \(H \) is the difference in level of the head and tail
water, or the afflux. The depth of the film is termed as before, \(d \), and the
submerged portion of the film is \(d - H \).

The passing film thus consists of two portions, the upper having a free
overfall and the lower being what can possibly be considered as a submerged
orifice, but without any top contraction. There can likewise be no bottom
contraction or friction in the upper portion. Some authorities, as Jackson,
calculate the discharge of each portion with two separate values of \(c \), the upper by formula (8), the lower by formulas (2) or (3). Jackson uses the coefficient 60 for the upper and 62 for the lower. The use of so low a coefficient as 62 for the lower orifice portion is clearly quite indefensible, it undoubtedly should vary from 7 to 0 or more. In the case of an ordinary orifice, the coefficient 84 given in par (8) would seem suitable. If, however, a high coefficient be used, the discharge will, in many cases exceed that of a free overfall, which is clearly impossible—hence the reason of Jackson’s adoption of the low coefficient.

* The Madras formula which has been well tested makes the coefficient \(c_s \), for the free portion of the overfall = 577 and \(c_s \) for the drowned portion = 80. The formula is:

\[
Q = \frac{11 \times \sqrt{t^2} \left(H + H_a \right) - H_a \frac{t}{2}}{f \left(H + H_a \right) \times x} \]

where \(x \) is depth of tailwater over crest and \(H_a \) is head due to velocity of approach. Perhaps it would be sounder to say \(c_s = 577 \) to 667 according to shape of mouthpiece and \(c_s = 75 \) to 85 according to depth of drowning. — Eo
But further, cases do occur where, by using this method and these coefficients, the resulting discharge will exceed that of a free overfall. The actual conditions of the two portions of the film are so dissimilar from the hypothetical, that this method of estimating the discharge cannot be satisfactory, and the only alternative is to adopt one coefficient for the whole film, neglecting any imaginary horizontal division in the same

(18) The following method, first instituted by Herschel, an American hydraulician, from the experiments of Francis and of Fteley and Stearns, appears to give satisfactory results within certain limits, and has the great merit of simplicity.

The formula for free discharge per foot run, or \(Q = 3.33d^2 \) is modified as follows —

\[Q = 3.33(ud)^2 \] \((8a) \)

The multiplier \(u \), varies in the proportion of \(d \) \((d - H)\). The results are liable to a probable error of about one unit in the second decimal place when \((d - H)\) is less than \(2H \) and to greater errors as the table progresses, values of \(u \) under \(7 \) being in particular uncertain.

The following table of values of \(u \) has been derived from Merriman's "Hydraulics" —

Table III — Factors \((u)\) for Submerged Weirs

<table>
<thead>
<tr>
<th>(\frac{l}{H})</th>
<th>(n)</th>
<th>(\frac{l}{H})</th>
<th>(n)</th>
<th>(\frac{d}{l})</th>
<th>(n)</th>
<th>(\frac{l}{H})</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.000</td>
<td>0.15</td>
<td>0.989</td>
<td>0.36</td>
<td>0.935</td>
<td>0.28</td>
<td>0.856</td>
</tr>
<tr>
<td>0.01</td>
<td>1.004</td>
<td>0.20</td>
<td>0.985</td>
<td>0.42</td>
<td>0.929</td>
<td>0.38</td>
<td>0.836</td>
</tr>
<tr>
<td>0.02</td>
<td>1.006</td>
<td>0.22</td>
<td>0.980</td>
<td>0.43</td>
<td>0.922</td>
<td>0.42</td>
<td>0.826</td>
</tr>
<tr>
<td>0.03</td>
<td>1.007</td>
<td>0.24</td>
<td>0.975</td>
<td>0.44</td>
<td>0.915</td>
<td>0.46</td>
<td>0.814</td>
</tr>
<tr>
<td>0.06</td>
<td>1.007</td>
<td>0.26</td>
<td>0.970</td>
<td>0.46</td>
<td>0.908</td>
<td>0.66</td>
<td>0.813</td>
</tr>
<tr>
<td>0.08</td>
<td>1.006</td>
<td>0.28</td>
<td>0.964</td>
<td>0.48</td>
<td>0.900</td>
<td>0.70</td>
<td>0.787</td>
</tr>
<tr>
<td>0.10</td>
<td>1.005</td>
<td>0.30</td>
<td>0.959</td>
<td>0.50</td>
<td>0.892</td>
<td>0.75</td>
<td>0.750</td>
</tr>
<tr>
<td>0.12</td>
<td>1.002</td>
<td>0.32</td>
<td>0.953</td>
<td>0.52</td>
<td>0.884</td>
<td>0.80</td>
<td>0.703</td>
</tr>
<tr>
<td>0.14</td>
<td>0.998</td>
<td>0.34</td>
<td>0.947</td>
<td>0.54</td>
<td>0.875</td>
<td>0.90</td>
<td>0.774</td>
</tr>
<tr>
<td>0.16</td>
<td>0.994</td>
<td>0.36</td>
<td>0.941</td>
<td>0.56</td>
<td>0.866</td>
<td>1.00</td>
<td>0.000</td>
</tr>
</tbody>
</table>

(19) The question of velocities * of approach and their values appears not to have received attention in works on hydraulics but is passed over in discreet silence consequently the only way to deal with the question is to use the same values as appear in Table II multiplying up all the columns by the new factor \(u^3 \). This has been done in the following Tables which give a sufficiently approximate value to work on, until reliable coefficients are made available by means of experiments.

* See Editor's Notes at end of this Chapter —FP
Table IV. (Series II)—Discharges per Foot Run of Submerged Falls

\(H = 1 \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>(d - H)</th>
<th>(n^1)</th>
<th>Mean Velocities of Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{d}{d^2})</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>3</td>
<td>94</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>84</td>
<td>79</td>
</tr>
<tr>
<td>2 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>6</td>
<td>79</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>73</td>
<td>127</td>
</tr>
<tr>
<td>5 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>7</td>
<td>70</td>
<td>153</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>65</td>
<td>173</td>
</tr>
<tr>
<td>4 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>77</td>
<td>63</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>59</td>
<td>220</td>
</tr>
<tr>
<td>5 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>82</td>
<td>56</td>
<td>241</td>
</tr>
<tr>
<td>6</td>
<td>83</td>
<td>54</td>
<td>264</td>
</tr>
<tr>
<td>7</td>
<td>85</td>
<td>51</td>
<td>315</td>
</tr>
<tr>
<td>8</td>
<td>87</td>
<td>48</td>
<td>362</td>
</tr>
</tbody>
</table>

Table IV. (Series III)—Discharge per Foot Run of Submerged Falls

\(H = 1 \text{\textsuperscript{\textsc{\textfrac{1}{2}}}} \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>(d - H)</th>
<th>(n^1)</th>
<th>Mean Velocities of Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{d}{d^2})</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>4</td>
<td>93</td>
<td>122</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>84</td>
<td>145</td>
</tr>
<tr>
<td>3 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>7</td>
<td>81</td>
<td>176</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>76</td>
<td>202</td>
</tr>
<tr>
<td>4 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>67</td>
<td>72</td>
<td>229</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>70</td>
<td>261</td>
</tr>
<tr>
<td>5 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>73</td>
<td>67</td>
<td>288</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>65</td>
<td>318</td>
</tr>
<tr>
<td>6 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>77</td>
<td>63</td>
<td>309</td>
</tr>
<tr>
<td>7</td>
<td>79</td>
<td>60</td>
<td>327</td>
</tr>
<tr>
<td>7 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>8</td>
<td>59</td>
<td>364</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>58</td>
<td>402</td>
</tr>
<tr>
<td>8 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>82</td>
<td>57</td>
<td>430</td>
</tr>
<tr>
<td>9</td>
<td>83</td>
<td>56</td>
<td>457</td>
</tr>
<tr>
<td>9 \footnotesize{\text{\textsuperscript{\textsc{i}}}}</td>
<td>84</td>
<td>55</td>
<td>486</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>54</td>
<td>517</td>
</tr>
<tr>
<td>11</td>
<td>86</td>
<td>53</td>
<td>537</td>
</tr>
<tr>
<td>12</td>
<td>87</td>
<td>52</td>
<td>586</td>
</tr>
</tbody>
</table>
Table IV (Series IV) — Discharge per Foot Run of Submerged Ialls

$H = 2$

<table>
<thead>
<tr>
<th>d</th>
<th>$\frac{d-H}{d}$</th>
<th>n^3</th>
<th>(d)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2</td>
<td>98</td>
<td>12.9</td>
<td>13.0</td>
<td>13.3</td>
<td>13.7</td>
<td>16.5</td>
<td>16.9</td>
<td>17.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>92</td>
<td>15.9</td>
<td>16.1</td>
<td>16.5</td>
<td>20.0</td>
<td>20.5</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>89</td>
<td>19.5</td>
<td>19.7</td>
<td>20.0</td>
<td>20.5</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>84</td>
<td>22.3</td>
<td>22.5</td>
<td>22.8</td>
<td>23.8</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>5</td>
<td>81</td>
<td>25.8</td>
<td>25.9</td>
<td>26.2</td>
<td>26.8</td>
<td>27.5</td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>78</td>
<td>29.0</td>
<td>29.5</td>
<td>30.1</td>
<td>30.1</td>
<td>31.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>6</td>
<td>75</td>
<td>32.1</td>
<td>32.7</td>
<td>33.3</td>
<td>34.1</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>72</td>
<td>35.3</td>
<td>35.8</td>
<td>36.4</td>
<td>37.2</td>
<td>38.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>7</td>
<td>71</td>
<td>39.2</td>
<td>39.8</td>
<td>40.3</td>
<td>41.2</td>
<td>42.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>68</td>
<td>42.0</td>
<td>42.5</td>
<td>43.1</td>
<td>44.0</td>
<td>45.0</td>
<td>46.1</td>
<td>47.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>67</td>
<td>45.8</td>
<td>46.4</td>
<td>47.0</td>
<td>47.9</td>
<td>48.9</td>
<td>49.7</td>
<td>51.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>65</td>
<td>48.0</td>
<td>49.6</td>
<td>50.1</td>
<td>51.1</td>
<td>52.1</td>
<td>53.3</td>
<td>54.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>8</td>
<td>63</td>
<td>51.4</td>
<td>52.0</td>
<td>53.2</td>
<td>54.1</td>
<td>55.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>61</td>
<td>54.9</td>
<td>55.4</td>
<td>56.1</td>
<td>57.0</td>
<td>58.0</td>
<td>59.2</td>
<td>62.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>9</td>
<td>60</td>
<td>58.5</td>
<td>59.1</td>
<td>59.7</td>
<td>60.6</td>
<td>61.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>59</td>
<td>62.2</td>
<td>62.7</td>
<td>63.4</td>
<td>64.3</td>
<td>65.3</td>
<td>66.7</td>
<td>68.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>56</td>
<td>68.1</td>
<td>68.6</td>
<td>69.3</td>
<td>70.3</td>
<td>71.5</td>
<td>72.7</td>
<td>74.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>54</td>
<td>74.7</td>
<td>75.3</td>
<td>75.9</td>
<td>76.8</td>
<td>78.0</td>
<td>79.2</td>
<td>81.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV (Series V)

$H = 2\frac{1}{2}$

<table>
<thead>
<tr>
<th>d</th>
<th>$\frac{d-H}{d}$</th>
<th>n^3</th>
<th>(d)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3\frac{1}{2}</td>
<td>28</td>
<td>95</td>
<td>20.7</td>
<td>21.2</td>
<td>21.8</td>
<td>22.2</td>
<td>26.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>91</td>
<td>24.4</td>
<td>24.7</td>
<td>25.4</td>
<td>26.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4\frac{1}{2}</td>
<td>44</td>
<td>87</td>
<td>27.7</td>
<td>28.2</td>
<td>28.8</td>
<td>29.6</td>
<td>30.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>84</td>
<td>31.3</td>
<td>31.9</td>
<td>32.5</td>
<td>33.3</td>
<td>34.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5\frac{1}{2}</td>
<td>53</td>
<td>82</td>
<td>35.2</td>
<td>35.8</td>
<td>36.4</td>
<td>37.3</td>
<td>38.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>79</td>
<td>38.7</td>
<td>39.2</td>
<td>39.9</td>
<td>40.8</td>
<td>41.9</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6\frac{1}{2}</td>
<td>61</td>
<td>77</td>
<td>42.5</td>
<td>43.1</td>
<td>43.7</td>
<td>44.7</td>
<td>45.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>75</td>
<td>46.3</td>
<td>46.9</td>
<td>47.5</td>
<td>48.5</td>
<td>49.6</td>
<td>50.9</td>
<td>52.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7\frac{1}{2}</td>
<td>66</td>
<td>73</td>
<td>50.0</td>
<td>50.6</td>
<td>51.2</td>
<td>52.2</td>
<td>53.3</td>
<td>54.2</td>
<td>56.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>69</td>
<td>71</td>
<td>53.5</td>
<td>54.2</td>
<td>54.8</td>
<td>55.7</td>
<td>56.9</td>
<td>58.2</td>
<td>59.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8\frac{1}{2}</td>
<td>7</td>
<td>70</td>
<td>57.1</td>
<td>57.7</td>
<td>58.4</td>
<td>59.1</td>
<td>60.0</td>
<td>61.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>68</td>
<td>61.2</td>
<td>61.8</td>
<td>62.5</td>
<td>63.4</td>
<td>64.6</td>
<td>66.0</td>
<td>67.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9\frac{1}{2}</td>
<td>73</td>
<td>67</td>
<td>65.4</td>
<td>66.0</td>
<td>66.7</td>
<td>67.6</td>
<td>68.4</td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>65</td>
<td>69.5</td>
<td>69.9</td>
<td>70.5</td>
<td>71.1</td>
<td>71.9</td>
<td>73.4</td>
<td>75.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>77</td>
<td>63</td>
<td>73.6</td>
<td>73.7</td>
<td>74.3</td>
<td>75.0</td>
<td>76.3</td>
<td>78.1</td>
<td>83.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>59</td>
<td>77.6</td>
<td>78.2</td>
<td>78.8</td>
<td>80.3</td>
<td>81.7</td>
<td>83.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>81</td>
<td>57</td>
<td>81.7</td>
<td>82.3</td>
<td>83.0</td>
<td>84.0</td>
<td>85.2</td>
<td>86.9</td>
<td>88.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>82</td>
<td>56</td>
<td>85.7</td>
<td>86.3</td>
<td>86.9</td>
<td>87.6</td>
<td>89.4</td>
<td>92.0</td>
<td>93.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>83</td>
<td>54</td>
<td>89.6</td>
<td>90.2</td>
<td>90.8</td>
<td>91.5</td>
<td>92.2</td>
<td>94.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>84</td>
<td>52</td>
<td>93.6</td>
<td>94.2</td>
<td>94.8</td>
<td>95.5</td>
<td>96.2</td>
<td>98.0</td>
<td>100.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>85</td>
<td>51</td>
<td>100.3</td>
<td>102.0</td>
<td>103.7</td>
<td>105.4</td>
<td>107.1</td>
<td>111.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>87</td>
<td>49</td>
<td>129.9</td>
<td>131.6</td>
<td>133.3</td>
<td>135.0</td>
<td>136.7</td>
<td>139.3</td>
<td>150.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IV. (Series VI)

\[H = 3 \]

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\frac{d-H}{d})</th>
<th>(n)</th>
<th>(0)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25</td>
<td>96</td>
<td>256</td>
<td>246</td>
<td>268</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>33</td>
<td>93</td>
<td>296</td>
<td>301</td>
<td>308</td>
<td>317</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>89</td>
<td>332</td>
<td>337</td>
<td>344</td>
<td>353</td>
<td>364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.25</td>
<td>45</td>
<td>87</td>
<td>348</td>
<td>354</td>
<td>361</td>
<td>370</td>
<td>381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>84</td>
<td>411</td>
<td>417</td>
<td>424</td>
<td>434</td>
<td>445</td>
<td>458</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>54</td>
<td>82</td>
<td>453</td>
<td>459</td>
<td>466</td>
<td>475</td>
<td>487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>80</td>
<td>494</td>
<td>500</td>
<td>507</td>
<td>517</td>
<td>528</td>
<td>543</td>
<td>560</td>
</tr>
<tr>
<td>7.25</td>
<td>60</td>
<td>78</td>
<td>534</td>
<td>540</td>
<td>547</td>
<td>557</td>
<td>569</td>
<td>579</td>
<td>590</td>
</tr>
<tr>
<td>8</td>
<td>62</td>
<td>76</td>
<td>573</td>
<td>580</td>
<td>586</td>
<td>597</td>
<td>609</td>
<td>623</td>
<td>640</td>
</tr>
<tr>
<td>8.5</td>
<td>64</td>
<td>75</td>
<td>612</td>
<td>619</td>
<td>634</td>
<td>644</td>
<td>656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>66</td>
<td>73</td>
<td>657</td>
<td>663</td>
<td>670</td>
<td>681</td>
<td>694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>68</td>
<td>71</td>
<td>693</td>
<td>699</td>
<td>707</td>
<td>717</td>
<td>730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>70</td>
<td>736</td>
<td>743</td>
<td>752</td>
<td>763</td>
<td>775</td>
<td>790</td>
<td>807</td>
</tr>
<tr>
<td>10.5</td>
<td>72</td>
<td>68</td>
<td>771</td>
<td>776</td>
<td>785</td>
<td>796</td>
<td>807</td>
<td>823</td>
<td>841</td>
</tr>
<tr>
<td>11</td>
<td>73</td>
<td>67</td>
<td>815</td>
<td>819</td>
<td>829</td>
<td>842</td>
<td>854</td>
<td>873</td>
<td>889</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>65</td>
<td>900</td>
<td>906</td>
<td>914</td>
<td>925</td>
<td>939</td>
<td>954</td>
<td>971</td>
</tr>
<tr>
<td>13</td>
<td>77</td>
<td>63</td>
<td>953</td>
<td>---</td>
<td>998</td>
<td>1008</td>
<td>1022</td>
<td>1039</td>
<td>1052</td>
</tr>
<tr>
<td>14</td>
<td>79</td>
<td>60</td>
<td>1046</td>
<td>---</td>
<td>1107</td>
<td>1086</td>
<td>1099</td>
<td>1120</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>59</td>
<td>1121</td>
<td>---</td>
<td>---</td>
<td>1169</td>
<td>1181</td>
<td>1197</td>
<td>1218</td>
</tr>
<tr>
<td>16</td>
<td>81</td>
<td>57</td>
<td>1216</td>
<td>---</td>
<td>---</td>
<td>1241</td>
<td>1257</td>
<td>1274</td>
<td>1294</td>
</tr>
<tr>
<td>18</td>
<td>83</td>
<td>54</td>
<td>1374</td>
<td>---</td>
<td>---</td>
<td>1398</td>
<td>1416</td>
<td>1425</td>
<td>1442</td>
</tr>
<tr>
<td>20</td>
<td>85</td>
<td>51</td>
<td>1520</td>
<td>---</td>
<td>---</td>
<td>1547</td>
<td>1554</td>
<td>1578</td>
<td>1596</td>
</tr>
</tbody>
</table>

Table IV. (Series VIII)

\[H = 4 \]

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\frac{d-H}{d})</th>
<th>(n)</th>
<th>(0)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>38</td>
<td>93</td>
<td>456</td>
<td>463</td>
<td>470</td>
<td>481</td>
<td>497</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>6.25</td>
<td>38</td>
<td>90</td>
<td>497</td>
<td>504</td>
<td>512</td>
<td>522</td>
<td>535</td>
<td>547</td>
<td>562</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>88</td>
<td>543</td>
<td>550</td>
<td>558</td>
<td>569</td>
<td>582</td>
<td>597</td>
<td>616</td>
</tr>
<tr>
<td>7.5</td>
<td>47</td>
<td>86</td>
<td>589</td>
<td>596</td>
<td>603</td>
<td>615</td>
<td>638</td>
<td>658</td>
<td>667</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>84</td>
<td>634</td>
<td>641</td>
<td>648</td>
<td>660</td>
<td>673</td>
<td>689</td>
<td>707</td>
</tr>
<tr>
<td>8.5</td>
<td>53</td>
<td>82</td>
<td>670</td>
<td>676</td>
<td>692</td>
<td>704</td>
<td>717</td>
<td>736</td>
<td>760</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>81</td>
<td>729</td>
<td>737</td>
<td>744</td>
<td>756</td>
<td>770</td>
<td>786</td>
<td>805</td>
</tr>
<tr>
<td>9.5</td>
<td>58</td>
<td>79</td>
<td>771</td>
<td>778</td>
<td>786</td>
<td>798</td>
<td>813</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>78</td>
<td>822</td>
<td>829</td>
<td>837</td>
<td>850</td>
<td>863</td>
<td>881</td>
<td>896</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>75</td>
<td>912</td>
<td>920</td>
<td>929</td>
<td>941</td>
<td>955</td>
<td>973</td>
<td>994</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>72</td>
<td>997</td>
<td>1003</td>
<td>1013</td>
<td>1026</td>
<td>1039</td>
<td>1057</td>
<td>1076</td>
</tr>
<tr>
<td>13</td>
<td>69</td>
<td>71</td>
<td>1108</td>
<td>---</td>
<td>1125</td>
<td>1137</td>
<td>1153</td>
<td>1175</td>
<td>1188</td>
</tr>
<tr>
<td>14</td>
<td>71</td>
<td>69</td>
<td>1204</td>
<td>---</td>
<td>1222</td>
<td>1233</td>
<td>1249</td>
<td>1264</td>
<td>1288</td>
</tr>
<tr>
<td>15</td>
<td>73</td>
<td>67</td>
<td>1297</td>
<td>---</td>
<td>---</td>
<td>1327</td>
<td>1342</td>
<td>1351</td>
<td>1382</td>
</tr>
<tr>
<td>16</td>
<td>75</td>
<td>65</td>
<td>1386</td>
<td>---</td>
<td>---</td>
<td>1416</td>
<td>1434</td>
<td>1453</td>
<td>1475</td>
</tr>
<tr>
<td>18</td>
<td>78</td>
<td>61</td>
<td>1552</td>
<td>---</td>
<td>---</td>
<td>1579</td>
<td>1593</td>
<td>1610</td>
<td>1629</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>59</td>
<td>1759</td>
<td>---</td>
<td>---</td>
<td>1791</td>
<td>1806</td>
<td>1825</td>
<td>1847</td>
</tr>
</tbody>
</table>
(20) The mean velocity of approach \(V_a \) which we have been considering is naturally some function of that of the normal river current. Now the discharge \(Q = AV = A_1 V_a \) in which expression \(A_1 \) is the area of the water section at or near the weir or obstruction. In deep reservoirs which do not silt up to any great extent \(V_a \) is less than \(V \). A proper appraisement of the value of \(A_1 \) is essential to the correct valuation of \(V_a \).

A point to be noted is that the mean velocity of approach of a large wide river varies in different parts of the water section and in such cases the river and the weir should be divided into parts each with its own velocity of approach and the multiplier varied accordingly.*

(21) In the above treatment of weirs we have dealt with open weirs presumably across rivers in canals however the superiority of the notch type of weirs which enables the water in the upper reach to be held up to normal level at whatever depth it may be renders its adoption suitable.

In a notch fall the triangular or rather trapezoidal openings are built with a converging and diverging approach similar to the so termed adjunctage attached to an orifice. This method of construction greatly increases the value of the coefficient of discharge through the notch so that when thus constructed the modification due to end contraction need not be used as it would have to be were the sides of the notch left square instead of which the coefficient should be slightly reduced.

It is considered that the coefficient for notch falls should be reduced† from the 623 of Francis formula to one of about 56. This will make with notch falls \(Q = 3d \) per foot run. This value is just 10 per cent below that for ordinary falls as calculated from Francis coefficient consequently new tables are not required.

(23) We will now proceed to examine the case of a fall through the openings of a head regulating bridge escape head or underslues.

Figs 5 and 5a are views of a work of this description the surface of water being free the case apparently resolves itself into the simple one of a submerged overfall to which formula (84) is applicable. The conditions however present some differences to those of a fall over a weir wall. The presence of the bottom floor diminishes the friction at the base of the current,

* In practice it is usually difficult to apply this process in satisfactory accuracy — En
† On Punjab canals the coefficient used is commonly 4 for canals and 6 for distributaries. The usual coe of allowance for velocity of approach — En.
and consequently in such cases as noticed in par (g) the coefficient always rises in value. Against this rise is the diminution in effective width due to the piers. As seen in par (xx), the reduction in the effective length of the water section would be \(1\text{nd, or }2 \times 10 = 2\text{ feet}\). This, however, applies only to the square and raised flanks of an ordinary weir wall, and not to piers provided with well shaped cutwaters as should invariably be adopted. In the latter case the effect of the cutwaters is to modify in a great measure the contraction alluded to.

(24) With regard to the coefficient, the ordinary one of \(623\) would clearly be inapplicable. In the case of orifices, proper reference to the list in par (6) shows that the rise of the coefficient in the case of bottom sluices is roughly about 2 points \(\text{v}e\text{.e.},\) from about 7 to 9. This would apply to the undercurrent portion of the fall only so that it is considered that the coefficient should be raised from 623 to 66 (the Castel coefficient). The discharge* under such conditions would be that given by Table IV increased by \(\frac{66}{62}\), or by \(\frac{33}{31}\). For example in this case \(H = 4, d = 10\), in Series VIII the unit discharge due to this combination is 822 cubic feet which, increased by \(\frac{33}{31}\), will become 875 cubic feet per second and in a 6-foot bay, 6 \(\times\) 875, or 525 cubic feet per second.

(25) If the arch were depressed below the surface of the water up stream as is often the case in head and underslues, the surface would not be free and contraction cause the latter to be applicable.

In this case 90 would probably apply.

If a bottom gate or baulk were left in the grooves in Fig 5 the discharge would be considerably modified. Supposing this obstruction to be 3 feet deep then on the assumption that \(H\) is of the same value \(\text{v}e\text{.e.},\) 4 feet, \(d\) will be reduced to 7 feet and the coefficient falls back to 623.

As a matter of fact \(H\) would rise till equilibrium was produced somehow, a matter very difficult to estimate with any precision unless the whole river supply went through the sluices.

The depth of the escape channel \(\text{v}e\text{.e.},\) of the tail water or \(d - H,\) depends on the slope of the channel and on its sectional area, \(\text{v}e\text{.e.},\) its discharging capacity and has been dealt with in another place.

(26) In a manner similar to the case of notch falls, a reduction in discharge per foot run can be effected in order to make allowance for the shape.

* According to the Madras formula the discharge per foot run neglecting velocity of approach would be

(a) For the free portion \(Q_1 = 3.5\sqrt{Q(H)}^{\frac{1}{3}} = 3.5 H^{\frac{1}{3}} = 24.8\) (where \(c_1 = 377\))

(b) For the drowned portion \(Q_2 = c_2(d - H)H^{\frac{1}{3}} = 8 \times 6 \times 4^{\frac{1}{3}} \times 8 \times 25 = 76.8\)

Whence \(Q = Q_1 + Q_2 = 24.8 + 76.8 = 101.6\) per foot run — E D
of the weir crest If the latter is broad crested like that of type C in Chap VI., a coefficient of \(0.577\) is often adopted in lieu of \(0.623\)

Discharge of Channels

(27) The formula for discharge of channels is Chezy's with Kutter's coefficient, \(v\).

\[
Q = AV = AC \sqrt{RS}
\]

in which \(R\) is the hydraulic mean depth, or \(\frac{\text{area of section}}{\text{wetted perimeter}}\), and \(S\) is the sine of the slope of water surface which can be assumed as parallel to the average slope of the bed of channel. The coefficient \(C\) is obtainable from Kutter's formula, which has superseded all previous ones. This formula expressed in feet is

\[
C = \frac{41.6 + \frac{1811}{n} + \frac{0.0281}{S}}{1 + \left(\frac{41.6 + \frac{0.0281}{S}}{n}\right)}
\]

in which \(n\), termed the coefficient of rugosity, varies with the nature of the channel and its degree of smoothness and uniformity of section. The values of \(n\) for earthen channels are as follows:

- For firm soil, of uniform section \(n = 0.20\)
- For channels in earth in good condition \(n = 0.225\)
- For channels in earth in average condition \(n = 0.25\)
- For channels in earth below average condition \(n = 0.275\)
- For channels in earth in defective condition, or rivers \(n = 0.30\)
- For very irregular channels \(n = 0.35\) to \(0.60\) or even higher

In calculations for canal discharges, \(n\) is given a value either of \(0.25\) or \(0.225\) in Punjab Canals practice, but values above \(0.275\) often obtain in practice, in head reaches of large canals, much silted, or scoured

(28) This formula (14) being somewhat cumbersome, tables are sometimes made use of in its application. Jackson's Hydraulic Manual and Higham's and Colonel Moore's tables are useful. It is sometimes convenient to substitute for \(S\), the sine of the inclination of the water surface, \(S\) in \(1,000\), termed \(S^\circ\). The formula for velocity can then be expressed as \(V = \frac{C \sqrt{10RS^\circ}}{n}\).

Thus if \(R = 4\) and \(S^\circ = 2\) per \(1,000\), \(V\) will equal \(2C \sqrt{2} = 2.83C\) cubic feet per second
For channels other than earth the values of \(n \) are as follows —

Well planed planks \(n = 0.09 \)

Cement-plaster, or enamelled pipes \(n = 0.10 \)

Cement-and sand plaster \(n = 0.11 \)

Unplaned timber \(n = 0.12 \)

Ashlar and brickwork cast and wrought \(n = 0.13 \)

Rubble masonry \(n = 0.17 \)

The value of \(n \), the coefficient of rugosity, has a great effect on the discharge so the selection of a suitable value in the case of river discharges is very essential. The coefficient in the case of natural channels will vary usually from \(n = 0.250 \) to \(0.350 \) for perennial streams and up to \(0.60 \), or, higher for torrents.

(29) The published tables by Colonel Moore, R E (Batsford), entitled New Tables for the Complete Solution of Ganguillet’s and Kutter’s Formula are of great use in finding the velocity, though for the reverse processes of finding \(S \) corresponding to certain values of \(R \) and of \(V \) they are not so suitable as Jackson’s or Higham’s. In this work Chezy’s form of equation viz \(V = 100 \sqrt{R \over S} \) is not used but Kutter’s long formula, which gives the velocity direct, not the derived coefficient applicable to Chezy’s formula given in par (27) is worked out.

The long formula as modified by Colonel Moore is

\[
V = \frac{l}{n} + \left(a + \frac{m}{S} \right) \sqrt{R + S}
\]

This is abbreviated into

\[
V = \frac{NR}{\sqrt{R + D}}
\]

where

\[
\lambda = \frac{l}{n} + \left(a + \frac{m}{S} \right) \sqrt{S}
\]

and

\[
D = \left(a + \frac{m}{S} \right) n
\]

The tables give the values of \(\lambda \) log \(N \) and of \(D \) for every possible value of \(S \) or surface inclination from \(1 \) over \(1 \) to \(1 \) over \(20 \ 000 \).

The value of \(R \) has to be calculated or found in the tables given it being equal to \(W \) over \(P \) or the area divided by the wetted perimeter. Thus by putting a few figures together the value of \(V \) is obtained. A large diagram is also annexed in which the value of \(c \) applicable to Chezy’s formula can be obtained. These tables form a valuable labour-saving help in the manipulation of Kutter’s formula.
(30) Methods of calculating flood discharges of rivers

As already noted the discharge of any channel is \(A \times I \) in which \(A \) is the area of the water section and \(I \) the mean velocity of the current. The mean velocity can be deduced by actual observation of the surface velocity in feet per second and the latter multiplied by a proper coefficient which varies from 65 to 8 gives the mean velocity (vide p. 21).

In a wide stream several surface velocities can be observed the water section being divided into any convenient number of parts and the flows are caused to pass through the centre of each of these divisions as near as possible then the discharge will be the sum of these areas each multiplied by the respective observed surface velocity reduced to mean velocity.

A more accurate method is by means of vertical rod floats of various lengths. These can be either tin tubes weighted at the bottom so as to float nearly immersed or else wooden rods with a piece of lead or gas piping twisted round the bottom. These velocity rods should float just clear of the bed of the stream. If the latter is very uneven as is often the case in rivers the system will not work. The rods give the actual mean velocity at once and consequently furnish more accurate results than reduced surface observations.

Another method of obtaining actual mean velocity observations is by the use of current meters. The meter is immersed at \(\frac{1}{3} \) the depth of the water in the middle of each division of the water area section and the velocity is recorded automatically by an electric current, the meter being connected with a battery.

(31) To determine the mean velocity in a cross section of a current where the maximum surface velocity is known the following formula by Prof. von Wagner gives reliable results —

\[
I = 705 \times 0.03 \times V^2
\]

(15)

In which \(V \) is the mean and \(v \) the surface velocity.

Thus supposing the observed maximum surface velocity of a section to be 3 feet per second the mean velocity \(I \) will be \(705 \times 3 + 0.03 \times 9 = 2115 + 0.27 = 2142 \) feet per second. Here a little over 7 \(I \). Other authorities as Jackson give 8 as the coefficient. In canal and river discharges in India 7 or 7.5 are the coefficients usually employed so that the ratio given in formula (15) can well be adopted.

(34) It often happens that actual velocity observations cannot be taken during a freshet and there is no time available for putting up self-recording white gauge posts which will indicate the flood surface by the discoloration due to muddy water passing. In such cases the slope of the water surface being unknown it can be assumed as parallel to the average bed slope for which purpose a longitudinal section of the bed for at least a mile in length should be levelled and plotted and at least three cross sections taken of the channel showing the maximum flood level which can be approximately obtained by observation of floating detritus deposited on
For channels other than earth the values of n are as follows —

Well planed planks $n = 0.09$

Cement plaster or enamelled pipes $n = 0.10$

Cement and sand plaster $n = 0.11$

Unplaned timber $n = 0.12$

Ashlar and brickwork cast and wrought iron $n = 0.13$

Rubble masonry $n = 0.17$

The value of n, the coefficient of rugosity, has a great effect on the discharge so the selection of a suitable value in the case of river discharges is very essential. The coefficient in the case of natural channels will vary usually from $n = 0.250$ to 0.350 for perennial streams and up to 0.600 or higher for torrents.

(29) The published tables by Colonel Moore R E (Batsford) entitled New Tables for the Complete Solution of Ganguillet's and Kutter's Formula are of great use in finding the velocity though for the reverse processes of finding S corresponding to certain values of R and of V they are not so suitable as Jackson's or Higham's. In this work Chezy's form of equation \[V = \frac{1000 c \sqrt{K S}}{Y} \] is not used but Kutter's long formula which gives the velocity direct not the derived coefficient applicable to Chezy's formula given in par (27) is worked out.

The long formula as modified by Colonel Moore is

\[
V = \frac{l}{n} + \left(a + \frac{m}{S} \right) \sqrt{R + \left(a + \frac{m}{S} \right) n}
\]

This is abbreviated into \[V = \frac{\sqrt{R}}{\sqrt{R + D}} \]

where \[N = \frac{l}{n} + \left(a + \frac{m}{S} \right) \sqrt{S} \]

and \[D = \left(a + \frac{m}{S} \right) n \]

The tables give the values of N, log N and of D for every possible value of S or surface inclination from 1 over 1 to 1 over 20,000.

The value of R has to be calculated or found in the tables given it being equal to \[\frac{A}{W} \] or the area divided by the wetted perimeter. Thus by putting a few figures together the value of V is obtained. A large diagram is also annexed in which the value of c applicable to Chezy's formula can be obtained. These tables form a valuable labour saving help in the manipulation of Kutter's formula.
CHAPTER V—HYDRAULIC FORMULAS

(30) Methods of calculating flood discharges of rivers

As already noted, the discharge of any channel is \(A \times V \), in which \(A \) is the area of the water section and \(V \) the mean velocity of the current. The mean velocity can be deduced by actual observation of the surface velocity in feet per second, and the latter multiplied by a proper coefficient, which varies from 0.5 to 8, gives the mean velocity (vide par (31)).

In a wide stream several surface velocities can be observed, the water section being divided into any convenient number of parts, and the floats are caused to pass through the centre of each of these divisions as near as possible, then the discharge will be the sum of these areas, each multiplied by the respective observed surface velocity, reduced to mean velocity.

A more accurate method is by means of vertical rod floats of various lengths. These can be either thin tubes weighted at the bottom so as to float nearly immersed, or else wooden rods with a piece of lead gas piping twisted round the bottom. These velocity rods should float just clear of the bed of the stream. If the latter is very uneven as is often the case in rivers, the system will not work. The rods give the actual mean velocity at once and consequently furnish more accurate results than reduced surface observations.

Another method of obtaining actual mean velocity observations is by the use of current meters. The meter is immersed at \(\frac{1}{2} \) the depth of the water in the middle of each division of the water area section and the velocity is recorded automatically by an electric current, the meter being connected with a battery.

(31) To determine the mean velocity in a cross section of a current where the maximum surface velocity is known, the following formula by Prof. von Wagner, gives reliable results —

\[
V' = 705 \times 003 \times V^2
\]

In which \(V' \) is the mean and \(V \) the surface velocity.

Thus suppose the observed maximum surface velocity of a section to be 3 feet per second, the mean velocity \(V \) will be \(705 \times 3 + 003 \times 9 = 2.115 + 0.27 = 2.42 \) feet per second, i.e., a little over 7. Other authorities, as Jackson, give 8 as the coefficient. In canal and river discharges in India 7 or 7.5 are the coefficients usually employed, so that the ratio given in formula (15) can well be adopted.

(34) It often happens that actual velocity observations cannot be taken during a freshwater and there is no time available for putting up self-recording white gauge posts which will indicate the flood surface by the discoloration due to muddy water passing. In such cases the slope of the water surface being unknown, it can be assumed as parallel to the average bed slope, for which purpose a longitudinal section of the bed for at least a mile in length should be levelled and plotted, and at least three cross sections taken of the channel showing the maximum flood level, which can be approximately obtained by observation of floating detritus deposited on
the bank or on bushes and by inquiry. These three cross sections taken at different places should be plotted one over the other and from this an average representative cross section should be drawn. Having obtained S i.e., the sine of the bed slope by levelling A and WP are measured from the section and thus K is obtained. The probable value of n, the coefficient of rugosity, has to be fixed with reference to the natural state of the channel and by application of formula (13) viz. $Q = 100 \times AC \sqrt{RS}$, the discharge is obtained. The value of the expression $100 \sqrt{RS}$ can be obtained from Jackson’s Hydraulic Manual or other tables in which Kutter’s formula is worked out for English feet

(36) The usual procedure of taking velocity discharges is as follows — A convenient reach being selected poles are erected in pairs at the starting and finishing points on either side of the channel their direction being at right angles to that of the channel. The distance apart of these pairs of poles is generally 50 feet for a slow current and 100 feet to 150 feet for a more rapid stream. If more than one velocity observation is required in the cross section ropes should be stretched between the two pairs of poles clear of the water on which the centres of the divisions in which the water section is divided should be clearly indicated by attaching a red streamer or otherwise. The floats discs of wood for surface velocities or the weighted rods as already described for mean velocity observation are let go by an attendant at the proper place some short distance above the first pair of poles. When the float crosses the first line of sight the time is noted and again when the float crosses the second line of sight. Stop watches are now invariably employed for this purpose reading to half seconds. At least five observations should be taken the mean being adopted as the true velocity. If a float strays from the line it is expected to follow that observation should be cancelled.

(37) In the case just described the water section is first of all divided into divisions but particularly in taking large rivers the width of the divisions may be arranged in accordance with the actual course taken by the floats. The method of taking the discharges of the Nile illustrates this system and the description obtained from Egyptian Irrigation is as follows —

A site was chosen where the river was fairly straight for fully 2 kilometres the most uniform cross section of the river was found by taking a large number of rough cross-sections. A peg was fixed in the bank opposite this section.

In the accompanying plan A is this fixed point. Through A a line BAC was marked exactly parallel to the direction of the river making AB and AC each equal to about the observed width of the river. A theodolite or plane table was put up at A, and the point D across the river on the line AD at right angles to BC was fixed. Since AB
and AC were both capable of being measured, they were measured, and
with the aid of the theodolite or plane table the length AD was obtained

"In the line AD, or its continuation, flags were put up at E and E_1 to
direct the man in the steamer on the Nile. The theodolite or plane table
was now put up at B or D and observations made on a steamer or boat on
the Nile which as it got on the line AD, threw out a signal and took a
sounding either with a line or sounding-rod. The boat or
steamer traversed the whole section, and if any gaps were left
without soundings, the plane
table showed where they were, and they could be immediately filled in.
While all this was going on, the nearest river gauge was being observed, and
also a temporary gauge erected at the site of the discharge site. The two
were afterwards connected by levelling. This completed the observations
necessary for the cross section, which was now plotted (see Fig 8)

(88) "The surface velocity observations were now made.

Two lines, HJ and KL (Fig 9) were fixed, the former 50 metres up
stream of AD, and the latter 50 metres downstream. Between these lines
the surface floats were observed. A theodolite or plane table was fixed at H
and the boat or steamer was sent up
stream with the floats. The observer
stood at H, and another at A. The
boat dropped a float into the stream
at a distance of about 50 metres up
stream of the line HJ at a convenient
point and the theodolite or plane
table at A followed it until the man
at H called out, on its crossing the line HJ. It was then observed and
recorded. This was repeated as the float crossed the line KL

The observers at H and K noted the time. When a sufficient number
of well-placed velocities over the half of the river near A were observed,
observations for the other half
were made from D. The field
work was now over. On the
cross section (Fig 10), the
points, E, F, G and C, where
the velocities were observed,
were plotted.

The cross-section was divided into a number of suitable sections, each
ruled by one or more observed velocities. Each section was calculated
separately, for instance, the section $AYZW$. Its area was $AYZW$, its
wetted perimeter was YZ, its hydraulic mean depth was $AYZW/YZ$, and the
rest followed from Bazin’s coefficients and tables."
In addition to the discharges obtained from surface velocity observations, others were calculated from surface slope observations. A very careful cross section of the river was taken as before, on a straight reach of some three or four kilometres, and at a point where the cross section was fairly uniform, showing that the river here was flowing normally. A section taken in winter was found more accurate than in flood. There was enough water in the river to preserve its normal slope of water surface, and not enough to render the taking of soundings difficult. The water surface was compared with the nearest fixed gauge of the river. The section was very carefully plotted and the water surface drawn on it, with the corresponding gauge readings written against it. Horizontal lines (vide Fig. 11), 1 metre or half a metre apart, were then plotted on this section, corresponding to the different gauge readings. The cross sections and hydraulic mean depths (i.e., A and R) were now calculated for each gauge reading. For the slope of the river surface a long reach of 50 kilometres was taken, as the chances of error were very much less than they would have been if 3 or 4 kilometres had been taken. This was easily effected on the Nile, as there were carefully levelled gauges 50 kilometres apart.

The mean slope on this reach of 50 kilometres was taken as the slope for calculating the discharges. Of course on curves the slope varies, but since the cross section had been taken in a carefully chosen normal site, the mean slope would refer to it. From the calculated velocities and discharges, a discharge and velocity diagram was made. This diagram was checked frequently by surface velocity observed as already described.

From the above the importance of taking the longitudinal section for some miles in length to ensure accuracy in the average surface slope which is naturally variable is demonstrated. The same would apply with equal force to a longitudinal section of the bed of a river taken when dry if the water slope cannot be otherwise ascertained.

Afflux

The calculation for afflux, i.e., the rise of the water surface in a river due to an obstruction in such a weir, is best arrived at by use of Tables II and IV when once the value of the velocity of approach or \(Q - A_1 \) has been decided on.

In a free overfall the afflux is the depth of film passing, plus that of the tail water surface below crest of weir. In a submerged fall, \(H \) is the afflux. To obtain \(d \) the flood discharge, which is a known quantity, should first be divided by the length of the weir, and the quotient will be the discharge per foot run. The next procedure is to find by interpolation in Table II that value of \(d \) which corresponds to the discharge and the velocity of approach.
(41) For example, supposing a weir to be built across a channel let its length be 30 feet and let the flood discharge of the river be estimated at 600 cubic feet per second. Suppose the area of the flood waterway is 228 square feet, whence the mean velocity is \(V = \frac{Q}{A} = \frac{600}{228} = 2.63 \text{ feet} \) The velocity of approach is \(\frac{Q}{A_1} \). Assuming \(A = A_1 \), \(Va = \frac{600}{228} = 2.63 \text{ feet} \); The unit weir discharge being 20 feet, by Table II, under \(V = 2\frac{1}{3} \) we see that \(d \) will lie between \(3 = 3\frac{1}{2} \), where the discharges in that column are 18,654 and 22,630 respectively. Their difference is 4,567, and that between the lower and the given discharge is 1,936 feet Therefore the addendum to \(d = 3 \) will be \(\frac{1,936}{4,567} \times \frac{1}{2} = 0.63 \) nearly, and \(d = 3 + 0.63 \). Allowing roughly for the difference between 2.63, the actual velocity, and 2.5, which has been used, \(d \) will probably equal 3 feet. The afflux will be 3 feet plus height of crest above tail water.

(42) The afflux in the case of a submerged weir is found by the same process. Let us assume the crest of the weir to be 3 feet below the flood level of the river below the weir. The discharge, as before, is 20 feet per foot run, \(d \) will equal \(H + 3 \). If \(H \) be taken as \(1 \), \(d = 4 \) and the corresponding discharge in Table IV, Series II, for \(V = 2\frac{1}{3} \) is 17.9 cubic feet. \(H \) must therefore exceed 1 foot. If taken as \(1.5 \) the corresponding discharge of \(d = 4\frac{1}{2} \) in Table IV, Series III, is 22.9 cubic feet, which is too large, hence the value of \(H \) must lie between \(1\frac{1}{2} \) and \(1 \), and as \(20 \) is a mean between the two values 22.9 and 17.9 the value of \(H \) may roughly be taken as \(1 \frac{1}{2} \). For practical requirements the afflux need only be calculated to the nearest half-foot.

(45) Two rather complicated problems, connected firstly with the rise of a river or stream up stream of an obstacle, and secondly with the fall of the surface due to an opening, producing a draft on the discharge, have been dealt with by M. Brusse a French mathematician. For the resulting formulas and tables we are indebted to that excellent work 'A Treatise on Hydraulics' by Professor Merriman (New York).

* For a free fall a simpler calculation is discharge per foot run = \(\frac{600}{30} = 20 = 3.33H^2 \)

Whence \(H = 3.3 \) feet. And afflux = \((H + 3)\) + elevation of crest of weir above tail water.

This ignores head due to velocity of approach which however is negligible since velocity of approach is only \(\frac{600}{228} = 2.63 \) feet per second so that \(\frac{2.63}{60} = 0.01 \) foot only — Ed.

† A simpler calculation is that given in Moleworth's 'Pocket Book' viz —

\[
R = \left(\frac{1}{58} + 0.05 \right) \left(\frac{2}{a} \right)^2 - 1
\]

where \(V \) = velocity of stream previous to obstruction (feet per second),
\(A \) = sectional area of stream unobstructed (square feet),
\(a \) = sectional area of stream obstructed (square feet),

\(R \) = rise of water caused by obstruction = \(\left(\frac{1}{58} + 0.05 \right) \left(\frac{2}{a} \right)^2 - 1 \) = \(\left(\frac{2.63^2}{58} + 0.05 \right) \left(\frac{2}{a} \right)^2 - 1 \) = 0.17 (6.4 - 1) = 0.92 foot — Ed.
In that work they are termed the "backwater surface curve" and the "drop down" curve. The latter appears a rather crude designation, it will be termed the "falling surface curve".

Fig 12 is a diagram explanatory of the backwater surface curve.*

BB is the sloping bed of the river assumed uniform and with a uniform width so that the depth \(D \) can be taken to represent the area per foot run as well as the hydraulic mean depth. CC is the ordinary surface parallel to the bed BB. The obstruction of the weir wall causes a rise in the surface which can be found by the method explained in the last paragraphs. The depth of afflux level is designated \(d_2 \) and the depth upstream at a distance \(l \) above \(h_2 \) is \(d_1 \). \(S \) is the slope. Now \(l \) is found, when the other values are given by the following formula:

\[
l = \frac{d_2 - d_1}{S} + D \left(\frac{I}{S} - \frac{(100c)^2}{g} \right) \left[\phi \left(\frac{d_1}{D} \right) - \phi \left(\frac{d_2}{D} \right) \right]
\]

(17)

Table VI gives the values of the decimal fraction \(\frac{D}{d} \) and the corresponding value of the function of \(\frac{d}{D} \).

(46) The greater depth \(d_2 \) need not be at the weir itself, but anywhere above it and \(d_2 \) is the depth \(l \) feet above it.

For example an actual case will be taken. At Narora Weir (Figs 3 and 4 Chap VI) the afflux level is 18 feet above normal river bed and the depth below the weir is 16 feet. Thus \(D = 16 \), \(d_2 = 18 \) feet and \(d_1 \) will be taken as 17 feet. The slope of the Ganges River is about \(1 \) in 10,000 \(\frac{I}{S} \) therefore is 10,000. Required to find at what distance above the weir the depth of the water will be 17 feet : e 1 foot rise above former flood levels.

Here \(\frac{D}{d_2} = \frac{16}{18} = 0.89 \) and by reference to Table VI the corresponding value of \(\phi \left(\frac{d_2}{D} \right) \) is 6173. In the same way \(\frac{D}{d_1} = \frac{16}{17} = 0.941 \), and \(\phi \left(\frac{d_1}{D} \right) \) is 82 nearly.

\(c \) is taken as 70 and \(g \) the gravity sign is 32 and \(\frac{(100c)^2}{g} = 153 \). Then

* See Editor's Notes at the end of this Chapter—Ed
† Fig 12 is not correctly drawn. Compare Fig 3 Chap VI. Height of weir is 16 feet only. The depth of tail water is 16 feet. Height of weir does not enter into the calculation—Ed
‡ When in high flood the slope is about 1 in 4,000—Ed
\[l = 10,000 \times (18 - 17) + 16 \times (10,000 - 153) \times (820 - 617) \]
\[l = 10,000 + 157,552 \times 203 \]
\[= 41,983 \text{ feet or nearly } 8 \text{ miles} \]

(47) Another example will be given of the same formula in which \(d_1 \) is required and \(l \) is given. In this case various values must be tried of \(\frac{D}{d_1} \) and of \(\varphi \left(\frac{d_1}{D} \right) \) until the right-hand expression of the equation equals the left.

Table VI Values of the Backwater Function

<table>
<thead>
<tr>
<th>(\frac{D}{d})</th>
<th>(\varphi \left(\frac{d}{D} \right))</th>
<th>(\frac{D}{l})</th>
<th>(\varphi \left(\frac{D}{D} \right))</th>
<th>(\frac{D}{l})</th>
<th>(\varphi \left(\frac{D}{D} \right))</th>
<th>(\frac{D}{l})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.954</td>
<td>0.9073</td>
<td>0.845</td>
<td>0.5037</td>
<td>0.051</td>
<td>0.2058</td>
</tr>
<tr>
<td>0.999</td>
<td>2.1834</td>
<td>0.931</td>
<td>0.810</td>
<td>0.4932</td>
<td>0.049</td>
<td>0.1980</td>
</tr>
<tr>
<td>0.998</td>
<td>1.0523</td>
<td>0.8795</td>
<td>0.835</td>
<td>0.4733</td>
<td>0.039</td>
<td>0.1905</td>
</tr>
<tr>
<td>0.997</td>
<td>1.8173</td>
<td>0.8662</td>
<td>0.830</td>
<td>0.4537</td>
<td>0.039</td>
<td>0.1932</td>
</tr>
<tr>
<td>0.996</td>
<td>1.7213</td>
<td>0.8539</td>
<td>0.825</td>
<td>0.4344</td>
<td>0.039</td>
<td>0.1761</td>
</tr>
<tr>
<td>0.995</td>
<td>1.6469</td>
<td>0.8418</td>
<td>0.820</td>
<td>0.4154</td>
<td>0.039</td>
<td>0.1692</td>
</tr>
<tr>
<td>0.994</td>
<td>1.5861</td>
<td>0.8301</td>
<td>0.815</td>
<td>0.3967</td>
<td>0.039</td>
<td>0.1625</td>
</tr>
<tr>
<td>0.993</td>
<td>1.5346</td>
<td>0.8188</td>
<td>0.810</td>
<td>0.3781</td>
<td>0.039</td>
<td>0.1560</td>
</tr>
<tr>
<td>0.992</td>
<td>1.4902</td>
<td>0.8069</td>
<td>0.805</td>
<td>0.3603</td>
<td>0.039</td>
<td>0.1497</td>
</tr>
<tr>
<td>0.991</td>
<td>1.4510</td>
<td>0.7973</td>
<td>0.800</td>
<td>0.3428</td>
<td>0.039</td>
<td>0.1435</td>
</tr>
<tr>
<td>0.990</td>
<td>1.4159</td>
<td>0.781</td>
<td>0.795</td>
<td>0.3263</td>
<td>0.039</td>
<td>0.136</td>
</tr>
<tr>
<td>0.989</td>
<td>1.3841</td>
<td>0.7772</td>
<td>0.790</td>
<td>0.3108</td>
<td>0.039</td>
<td>0.1285</td>
</tr>
<tr>
<td>0.988</td>
<td>1.3531</td>
<td>0.7725</td>
<td>0.785</td>
<td>0.2953</td>
<td>0.039</td>
<td>0.1212</td>
</tr>
<tr>
<td>0.987</td>
<td>1.3284</td>
<td>0.7631</td>
<td>0.780</td>
<td>0.2801</td>
<td>0.039</td>
<td>0.1143</td>
</tr>
<tr>
<td>0.986</td>
<td>1.3037</td>
<td>0.7547</td>
<td>0.775</td>
<td>0.2650</td>
<td>0.039</td>
<td>0.1075</td>
</tr>
<tr>
<td>0.985</td>
<td>1.2807</td>
<td>0.7466</td>
<td>0.770</td>
<td>0.2502</td>
<td>0.039</td>
<td>0.1008</td>
</tr>
<tr>
<td>0.984</td>
<td>1.2592</td>
<td>0.7388</td>
<td>0.765</td>
<td>0.2356</td>
<td>0.039</td>
<td>0.0943</td>
</tr>
<tr>
<td>0.983</td>
<td>1.2390</td>
<td>0.7313</td>
<td>0.760</td>
<td>0.2213</td>
<td>0.039</td>
<td>0.0881</td>
</tr>
<tr>
<td>0.982</td>
<td>1.2199</td>
<td>0.7243</td>
<td>0.755</td>
<td>0.2072</td>
<td>0.039</td>
<td>0.0821</td>
</tr>
<tr>
<td>0.981</td>
<td>1.2019</td>
<td>0.7175</td>
<td>0.750</td>
<td>0.1933</td>
<td>0.039</td>
<td>0.0763</td>
</tr>
<tr>
<td>0.980</td>
<td>1.1848</td>
<td>0.7110</td>
<td>0.745</td>
<td>0.1797</td>
<td>0.039</td>
<td>0.0707</td>
</tr>
<tr>
<td>0.979</td>
<td>1.1686</td>
<td>0.7054</td>
<td>0.740</td>
<td>0.1662</td>
<td>0.039</td>
<td>0.0652</td>
</tr>
<tr>
<td>0.978</td>
<td>1.1531</td>
<td>0.6999</td>
<td>0.735</td>
<td>0.1529</td>
<td>0.039</td>
<td>0.0598</td>
</tr>
<tr>
<td>0.977</td>
<td>1.1383</td>
<td>0.6955</td>
<td>0.730</td>
<td>0.1397</td>
<td>0.039</td>
<td>0.0547</td>
</tr>
<tr>
<td>0.976</td>
<td>1.1241</td>
<td>0.6911</td>
<td>0.725</td>
<td>0.1266</td>
<td>0.039</td>
<td>0.0498</td>
</tr>
<tr>
<td>0.975</td>
<td>1.1105</td>
<td>0.6867</td>
<td>0.720</td>
<td>0.1136</td>
<td>0.039</td>
<td>0.0452</td>
</tr>
<tr>
<td>0.974</td>
<td>1.0974</td>
<td>0.6823</td>
<td>0.715</td>
<td>0.1007</td>
<td>0.039</td>
<td>0.0408</td>
</tr>
<tr>
<td>0.973</td>
<td>1.0840</td>
<td>0.6780</td>
<td>0.710</td>
<td>0.0880</td>
<td>0.039</td>
<td>0.0366</td>
</tr>
<tr>
<td>0.972</td>
<td>1.0727</td>
<td>0.6738</td>
<td>0.705</td>
<td>0.0754</td>
<td>0.039</td>
<td>0.0325</td>
</tr>
<tr>
<td>0.971</td>
<td>1.0610</td>
<td>0.6697</td>
<td>0.700</td>
<td>0.0630</td>
<td>0.039</td>
<td>0.0286</td>
</tr>
<tr>
<td>0.970</td>
<td>1.0507</td>
<td>0.6655</td>
<td>0.695</td>
<td>0.0507</td>
<td>0.039</td>
<td>0.0249</td>
</tr>
<tr>
<td>0.968</td>
<td>1.0404</td>
<td>0.6613</td>
<td>0.690</td>
<td>0.0385</td>
<td>0.039</td>
<td>0.0213</td>
</tr>
<tr>
<td>0.966</td>
<td>1.0302</td>
<td>0.6571</td>
<td>0.685</td>
<td>0.0265</td>
<td>0.039</td>
<td>0.0179</td>
</tr>
<tr>
<td>0.964</td>
<td>1.0200</td>
<td>0.6529</td>
<td>0.680</td>
<td>0.0146</td>
<td>0.039</td>
<td>0.0144</td>
</tr>
<tr>
<td>0.962</td>
<td>1.0108</td>
<td>0.6488</td>
<td>0.675</td>
<td>0.0029</td>
<td>0.039</td>
<td>0.0111</td>
</tr>
<tr>
<td>0.960</td>
<td>1.0015</td>
<td>0.6447</td>
<td>0.670</td>
<td>0.0000</td>
<td>0.039</td>
<td>0.0079</td>
</tr>
<tr>
<td>0.958</td>
<td>0.9922</td>
<td>0.6406</td>
<td>0.665</td>
<td>0.0000</td>
<td>0.039</td>
<td>0.0047</td>
</tr>
<tr>
<td>0.956</td>
<td>0.9830</td>
<td>0.6365</td>
<td>0.660</td>
<td>0.0000</td>
<td>0.039</td>
<td>0.0015</td>
</tr>
</tbody>
</table>
This case will be taken in connection with Okhla Weir (Fig 16 Chap VI)

The given values are as follows —

\[D = 14.7 \quad d_2 = 17.7 \quad \frac{D}{d_2} = 83 \quad \text{and} \quad \phi \left(\frac{d_2}{D} \right) = 4733 \quad (\text{from Table VI}) \]

\[l \text{ will be taken as 3 miles or 15,840 feet} \quad 100cc \text{ as 170 and} \quad \frac{100cc}{g} = 153 \]

\[S = 0.01 \quad \text{The equation will then be} \quad 15,840 = 177,000 - 10,000d_1 + 14.7 \]

\[(9,847) \left[\phi \left(\frac{d_1}{D} \right) - 47338 \right] \]

This worked out

\[10,000d_1 - 144,750 \left[\phi \left(\frac{d_1}{D} \right) \right] = 177,000 - 84,348 = 92,652 \]

Let a trial value of \(d_1 \) be 17 feet then the equation becomes

\[170,000 - 144,750 \times 5494 = 90,415 \]

which is as near as it possibly can be to the proper value which is 92,650

The value 5494 is \(\phi \frac{d_1}{D} \) when \(\frac{D}{d_1} = \frac{14.7}{17} = 865 \) and is obtained from Table VI opposite 865

Thus 3 miles above the weir the flood afflux level will be \(17 - 14.7 = 2.3 \) above the original river flood level

The Falling Surface Curve

(48) When a sudden fall occurs in a stream such as a drop in the bed as in the fall which has not a rounded or narrowed crest or from a side opening

\[d_1 \quad d_2 \quad \text{Original} \quad \text{Water} \quad \text{Surface} \]

Fig. 13 — Diagram of Falling Surface Curve

As a canal escape which draws the whole discharge away from the channel the water surface for a long distance above it is concave to the bed

This is explained in Fig 13

In this figure \(d_1 \) the greater value and \(d_2 \) the less are supposed to be depths of the water after the stream has settled down to its new regimen and has what is termed a steady though non uniform flow and let \(l \) be the distance between them Then the principle of formula (17) will apply in this case as well the only difference being due to \(d_1 \) having the higher value It stands as below

\[l = -\frac{d_1}{S} - \frac{d_2}{S} + \frac{D}{S} \left(1 - \frac{100cc}{g} \right) \left[\phi \left(\frac{d_1}{D} \right) - \phi \left(\frac{d_2}{D} \right) \right] \quad (18) \]
(49) An example of the working of this formula will be taken from Merriman's "Hydraulics".

Take a canal 10 feet deep having a coefficient \(1000c\) equal to 80 and let the slope of the bed be \(1 - 5000\) and its surface slope be the same as when

<table>
<thead>
<tr>
<th>Table VII — Values of the Falling Surface Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d}{D})</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>0.999</td>
</tr>
<tr>
<td>0.998</td>
</tr>
<tr>
<td>0.997</td>
</tr>
<tr>
<td>0.996</td>
</tr>
<tr>
<td>0.995</td>
</tr>
<tr>
<td>0.994</td>
</tr>
<tr>
<td>0.993</td>
</tr>
<tr>
<td>0.992</td>
</tr>
<tr>
<td>0.991</td>
</tr>
<tr>
<td>0.990</td>
</tr>
<tr>
<td>0.989</td>
</tr>
<tr>
<td>0.988</td>
</tr>
<tr>
<td>0.987</td>
</tr>
<tr>
<td>0.986</td>
</tr>
<tr>
<td>0.985</td>
</tr>
<tr>
<td>0.984</td>
</tr>
<tr>
<td>0.983</td>
</tr>
<tr>
<td>0.982</td>
</tr>
<tr>
<td>0.981</td>
</tr>
<tr>
<td>0.980</td>
</tr>
<tr>
<td>0.979</td>
</tr>
<tr>
<td>0.978</td>
</tr>
<tr>
<td>0.977</td>
</tr>
<tr>
<td>0.976</td>
</tr>
<tr>
<td>0.975</td>
</tr>
<tr>
<td>0.974</td>
</tr>
<tr>
<td>0.973</td>
</tr>
<tr>
<td>0.972</td>
</tr>
<tr>
<td>0.971</td>
</tr>
<tr>
<td>0.970</td>
</tr>
<tr>
<td>0.968</td>
</tr>
<tr>
<td>0.966</td>
</tr>
<tr>
<td>0.964</td>
</tr>
<tr>
<td>0.962</td>
</tr>
<tr>
<td>0.960</td>
</tr>
<tr>
<td>0.958</td>
</tr>
<tr>
<td>0.956</td>
</tr>
<tr>
<td>0.954</td>
</tr>
<tr>
<td>0.952</td>
</tr>
<tr>
<td>0.950</td>
</tr>
<tr>
<td>0.948</td>
</tr>
<tr>
<td>0.946</td>
</tr>
<tr>
<td>0.944</td>
</tr>
<tr>
<td>0.942</td>
</tr>
<tr>
<td>0.940</td>
</tr>
<tr>
<td>0.938</td>
</tr>
<tr>
<td>0.936</td>
</tr>
</tbody>
</table>

The water is in uniform flow. Here \(D = 10\) feet \((1000c)^2 - g = 200\) and \(1 - S = 5000\). Then

\[
l = -5000 (d_1 - d_2) + 48000 \left[\phi \left(\frac{d_1}{D}\right) - \phi \left(\frac{d_2}{D}\right) \right]
\]
It is required to find the distance between two points where \(d_1 = 8 \) feet and \(d_2 = 7 \) feet. Here \(\frac{d_1}{D} = 8 \), for which \(\phi \left(\frac{d_1}{D} \right) = 3459 \) and \(\frac{d_2}{D} = 7 \), for which \(\phi \left(\frac{d_2}{D} \right) = 1711 \). Inserting these values in the equation, there is found \(l = 3390 \) feet.

Supply from run off of Rainfall

(52) In the cases of storage reservoirs it frequently happens that the supply is obtained, not by one large stream which can be gauged and its minimum and maximum supply estimated, but by numerous rills and streams which cannot well be separately dealt with. Under such conditions the supply has to be estimated from the run off of the rainfall, i.e., the least and also the greatest supply available from the catchment subject has been well treated in the Madras, Southern India has a very extensive system, proper value which is 92,650.

The following consists in great part of experience, and is obtained from work—

(53) **Rainfall**—Rainfall is the constant level will be 17 - 147 = 23 purposes, and therefore a knowledge of periods and of the effects produced by all whose duty it is to design carry out works.

The resulting discharge from rainfall has as a drop in the bed, as in a canal, water to be utilised, (2) the water to be diverted, or from a side opening on every irrigation works.

![Diagram of Falling Surface Curve](image)

Fig. 13—Diagram of Falling Surface Curve

as a canal escape which draws the whole discharge away from the channel, the water surface for a long distance above it is concave to the bed.

This is explained in Fig. 13.

In this figure, \(d_1 \) the greater value, and \(d_2 \) the less, are supposed to be depths of the water after the stream has settled down to its new regimen and has what is termed a steady, though non uniform, flow, and let \(l \) be the distance between them. Then the principle of formula (17) will apply in this case as well the only difference being due to \(d_1 \) having the higher value. It stands as below

\[
l = -\frac{d_1 - d_2}{5} + D \left(\frac{1}{S} - \frac{(100c)^2}{g} \right) \left[\phi \left(\frac{d_1}{D} \right) - \phi \left(\frac{d_2}{D} \right) \right].
\]
which case the proportion of the whole discharge intercepted may be large or small, or it may be utilised by means of irrigation canals or channels, with or without the aid of an ancif or weir to raise the water level in the watercourse, which may be the immediate source of supply. The water so drawn off may be used for what is termed direct irrigation, as in the supply of canals or for that of tanks. In all cases, however, the whole quantity of water discharged by the basin has to be considered and divided into two parts: the one to be used for irrigation and the other to be safely passed on or discharged to waste.

(55) Maximum Discharge of Catchment Basin.—Upon a right estimate of the greatest quantity of water liable to be discharged by a catchment depend the safety of the works which may exist, or which it may be useful to utilise a part of the water for irrigation purposes. The estimation of this quantity is not possible, owing to the uncertain nature of the works which may be made available, and then, by allowing a reasonable margin for safety, may be secured for the present.

Large Formulas.—The first data to be considered are the records of the levels and discharges in the past. These data require to be very carefully compared with the evidence obtained, and it has been decided what in the case of a certain number of levels it is necessary to ascertain from other sources. That discharge is likely to have approximated the expected.

In conclusively that the flood discharge from large basins is much less than that from small basins. This fact led to the determination of reduction of formulas to assist in the determination of and if judiciously used they are of considerable value for as a check on the results obtained from local observation. The formulas which have been in use are the

\[Q = k_1 \times 100 \times K^3 \]
\[Q = k \times 100 \times K^3 \]
\[Q = 200 \times K^3 \]
in which \(K \) represents the area of the catchment basin in square miles, \(k \) is a coefficient depending for its value upon rainfall, soil, slope of ground forming the basin, etc., and \(Q \) is the resulting discharge, which is usually taken in terms of cubic feet a second. The first of these formulas assumes that the discharge from catchment basins of differing areas varies as the cube root of the square of the area, while in the second the variation is supposed to be as the fourth root of the cube of the area. The general result is, in the former case a much more rapid diminution of proportionate discharge as the area increases than in the latter case. The data for determining which is the more generally applicable formula for Southern India do not as yet exist, and either may be usefully employed under the restrictions above noticed as necessary. The following additional caution should, however, not be lost sight of. No such formula can be strictly applicable with the same coefficient to areas of various sizes even in the same part of the country and within the influence of the same intensity of rainfall, unless the other circumstances, such as slope of the ground, description of the soil, etc., be approximately similar.

(58) The values of \(K_2 \), \(K_4 \) for areas from 1 square mile to 50,000 square miles are given in Table VIII. The chief difficulty will be found in the selection of a suitable coefficient. For the comparatively limited areas in the coastal districts where the country is flat, and the drainage takes a longer time to run off, \(k = 4 \) or 5 have been found to be suitable coefficients in Ryves' formula and 6.75 is a suitable coefficient for limited areas near the hills.

(59) The two Tables herewith given are (1) the discharges in thousands of cubic feet per second calculated from the two formulas, Ryves' \(Q = k_{100} K_2^2 \) and Dickens' \(Q = k_{100} K_4^2 \). In both the formulas for an area of 1 square mile the discharge is equal to the coefficient employed, i.e., the run-off is equal to the whole rainfall. The first square mile is the base of the formulas, as the area increases, the proportion of run-off becomes less in one formula as \(K_2^2 \) and the other as \(K_4^2 \). To utilise the Tables properly, i.e., to find the proper coefficient to be used, the method in Madras is to adopt as base an area of 5 square miles, in which area the maximum recorded rainfall is precipitated, this may be anywhere in a catchment basin. It is rightly assumed that heavy cyclonic storms only occur over a very limited area. In Table IX the run-off from the areas in square miles is converted from Table VIII into inches deep of run-off. But 5 square miles being taken as the base, this run-off will be equal to the rainfall. The examples on p. 137 are taken from the "Madras Manual."

(60) For example, suppose the greatest recorded rainfall within or near a catchment basin under investigation to have been 11 inches. The nearest run-off and rainfall to this in the line of 5 square miles (Table IX.) is 10.86 inches under coefficient 500 for Ryves' formula, and about midway between 400 and 500 for Dickens' formula. Were no other data available,
Table IX. Run off in Inches Deep from Acre in Square Miles in 24 Hours

$$d = \frac{9Q}{242K}$$

Where:
- **d** = depth of runoff in inches
- **Q** = discharge in cubic feet per second
- **K** = area in square miles

Areas in Square Miles

<table>
<thead>
<tr>
<th>Areas in Square Miles</th>
<th>$Q = k_{100} K^2$</th>
<th>$Q = k_{300} K^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.200</td>
<td>0.200</td>
</tr>
<tr>
<td>5</td>
<td>0.581</td>
<td>0.576</td>
</tr>
<tr>
<td>10</td>
<td>0.929</td>
<td>0.929</td>
</tr>
<tr>
<td>25</td>
<td>1.710</td>
<td>1.710</td>
</tr>
<tr>
<td>50</td>
<td>2.717</td>
<td>2.717</td>
</tr>
<tr>
<td>100</td>
<td>4.309</td>
<td>4.309</td>
</tr>
<tr>
<td>250</td>
<td>7.938</td>
<td>7.938</td>
</tr>
<tr>
<td>500</td>
<td>12.600</td>
<td>12.600</td>
</tr>
<tr>
<td>1,000</td>
<td>20.000</td>
<td>20.000</td>
</tr>
<tr>
<td>2,500</td>
<td>36.84</td>
<td>36.84</td>
</tr>
<tr>
<td>5,000</td>
<td>58.48</td>
<td>58.48</td>
</tr>
<tr>
<td>10,000</td>
<td>92.84</td>
<td>92.84</td>
</tr>
<tr>
<td>25,000</td>
<td>171.00</td>
<td>171.00</td>
</tr>
<tr>
<td>50,000</td>
<td>271.4</td>
<td>271.4</td>
</tr>
</tbody>
</table>

Coefficients (Rivers) (k_1)

<table>
<thead>
<tr>
<th>Coefficients (Rivers) (k_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1,000</td>
</tr>
<tr>
<td>2,500</td>
</tr>
<tr>
<td>5,000</td>
</tr>
<tr>
<td>10,000</td>
</tr>
<tr>
<td>25,000</td>
</tr>
</tbody>
</table>

Coefficients (Dickens) (k_1)

<table>
<thead>
<tr>
<th>Coefficients (Dickens) (k_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1,000</td>
</tr>
<tr>
<td>2,500</td>
</tr>
<tr>
<td>5,000</td>
</tr>
<tr>
<td>10,000</td>
</tr>
<tr>
<td>25,000</td>
</tr>
</tbody>
</table>
in which \(K \) represents the area of the catchment basin in square miles, \(k \) is a coefficient depending for its value upon rainfall, soil, slope of ground forming the basin, etc., and \(Q \) is the resulting discharge, which is usually taken in terms of cubic feet per second. The first of these formulas assumes that the discharge from catchment basins of differing areas varies as the cube root of the square of the area, while in the second the variation is supposed to be as the fourth root of the cube of the area. The general result is, in the former case a much more rapid diminution of proportionate discharge as the area increases than in the latter case. The data for determining which is the more generally applicable formula for Southern India do not as yet exist, and either may be usefully employed under the restrictions above noticed as necessary. The should, however, not be lost sight applicable with the same coefficient same part of the country and with rainfall, unless the other c description of the soil, etc.
Table VII—Table of Total Monsoon Rainfall and Estimated Run-off and Yield per Square Mile from Catchment Areas in Vagpur (C P India)

<table>
<thead>
<tr>
<th>Total Monsoon Rainfall in in.</th>
<th>Per cent of Run-off to Rainfall</th>
<th>Yield of Run-off from Catchment per square m. in L. c. f</th>
<th>Per cent of Run-off to Rainfall</th>
<th>Yield of Run-off from Catchment per square in. in L. c. f</th>
<th>Per cent of Run-off to Rainfall</th>
<th>Yield of Run-off from Catchment per square in. in L. c. f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.007</td>
<td>0.1</td>
<td>0.007</td>
<td>0.1</td>
<td>0.007</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.009</td>
<td>0.2</td>
<td>0.009</td>
<td>0.2</td>
<td>0.009</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.011</td>
<td>0.3</td>
<td>0.011</td>
<td>0.3</td>
<td>0.011</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>0.013</td>
<td>0.4</td>
<td>0.013</td>
<td>0.4</td>
<td>0.013</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.015</td>
<td>0.5</td>
<td>0.015</td>
<td>0.5</td>
<td>0.015</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>0.017</td>
<td>0.6</td>
<td>0.017</td>
<td>0.6</td>
<td>0.017</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>0.019</td>
<td>0.7</td>
<td>0.019</td>
<td>0.7</td>
<td>0.019</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>0.021</td>
<td>0.8</td>
<td>0.021</td>
<td>0.8</td>
<td>0.021</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>0.023</td>
<td>0.9</td>
<td>0.023</td>
<td>0.9</td>
<td>0.023</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.025</td>
<td>1.0</td>
<td>0.025</td>
<td>1.0</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Accordingly, Colonel Mullins in the Madras Irrigation Manual is of opinion that this proportion is excessive and that it should more correctly vary somewhat with the slope of bed of stream as well as being proportionate to the area of the catchment basin.
(68) The shape of the catchment affects the coefficient, and attempts have been made to modify the coefficient so as to take the latter into account. There is a great deal of literature on this difficult subject, but nothing of a definite character. The formula is \(Q = k \times 100 \frac{B}{L} K^2 \) where \(B \) and \(L \) are breadth and length of the catchment (vide Jackson's "Hyd Manual," Chap I).

The minimum discharge from a catchment area may be considered as 10 per cent of the average rainfall.

Table XIII—Table of the Discharges of a Waste-Way Channel having a Bed-Width of 200 Feet and a Bed Slope of 1 in 100

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Depth</td>
<td>Aff x Head</td>
<td>Tall Depth</td>
<td>Afflux Coefficient</td>
<td>Channel Coefficient</td>
<td>D</td>
<td>(\sqrt{D_1 (d_1 + 2 d_2)})</td>
<td>Mean Velocity of Tall Channel</td>
</tr>
<tr>
<td>Feet</td>
<td>Feet</td>
<td>Feet</td>
<td>Feet</td>
<td>Feet</td>
<td>Feet</td>
<td>Feet</td>
<td>Feet per second</td>
</tr>
<tr>
<td>1</td>
<td>0.30</td>
<td>0.70</td>
<td>0.60</td>
<td>4.10</td>
<td>0.495</td>
<td>0.495</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0.74</td>
<td>1.26</td>
<td>0.60</td>
<td>5.20</td>
<td>1.510</td>
<td>1.505</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1.24</td>
<td>1.76</td>
<td>0.60</td>
<td>5.90</td>
<td>2.85</td>
<td>2.87</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1.70</td>
<td>2.30</td>
<td>0.62</td>
<td>6.44</td>
<td>4.47</td>
<td>4.46</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>2.15</td>
<td>2.85</td>
<td>0.64</td>
<td>6.88</td>
<td>6.34</td>
<td>6.29</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>2.63</td>
<td>3.37</td>
<td>0.66</td>
<td>7.20</td>
<td>8.29</td>
<td>8.29</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>3.08</td>
<td>3.92</td>
<td>0.68</td>
<td>7.50</td>
<td>10.48</td>
<td>10.45</td>
<td>14.55</td>
</tr>
<tr>
<td>8</td>
<td>3.52</td>
<td>4.48</td>
<td>0.70</td>
<td>7.75</td>
<td>12.80</td>
<td>12.84</td>
<td>16.04</td>
</tr>
<tr>
<td>9</td>
<td>3.95</td>
<td>5.05</td>
<td>0.72</td>
<td>7.95</td>
<td>15.23</td>
<td>15.28</td>
<td>17.41</td>
</tr>
<tr>
<td>10</td>
<td>4.36</td>
<td>5.64</td>
<td>0.74</td>
<td>8.14</td>
<td>17.87</td>
<td>17.87</td>
<td>18.80</td>
</tr>
<tr>
<td>11</td>
<td>4.77</td>
<td>6.23</td>
<td>0.76</td>
<td>8.31</td>
<td>20.56</td>
<td>20.51</td>
<td>20.11</td>
</tr>
<tr>
<td>12</td>
<td>5.17</td>
<td>6.82</td>
<td>0.78</td>
<td>8.45</td>
<td>23.34</td>
<td>23.34</td>
<td>21.38</td>
</tr>
<tr>
<td>13</td>
<td>5.54</td>
<td>7.46</td>
<td>0.80</td>
<td>8.58</td>
<td>26.24</td>
<td>26.20</td>
<td>22.57</td>
</tr>
<tr>
<td>14</td>
<td>6.00</td>
<td>8.00</td>
<td>0.80</td>
<td>8.68</td>
<td>29.44</td>
<td>29.40</td>
<td>23.61</td>
</tr>
<tr>
<td>15</td>
<td>6.47</td>
<td>8.53</td>
<td>0.80</td>
<td>8.77</td>
<td>32.65</td>
<td>32.61</td>
<td>24.56</td>
</tr>
<tr>
<td>16</td>
<td>6.94</td>
<td>9.06</td>
<td>0.80</td>
<td>8.86</td>
<td>36.03</td>
<td>36.00</td>
<td>25.51</td>
</tr>
<tr>
<td>17</td>
<td>7.42</td>
<td>9.58</td>
<td>0.80</td>
<td>8.93</td>
<td>39.47</td>
<td>39.52</td>
<td>26.43</td>
</tr>
<tr>
<td>18</td>
<td>7.86</td>
<td>10.14</td>
<td>0.80</td>
<td>9.00</td>
<td>43.10</td>
<td>43.06</td>
<td>27.28</td>
</tr>
<tr>
<td>19</td>
<td>8.33</td>
<td>10.67</td>
<td>0.80</td>
<td>9.07</td>
<td>46.88</td>
<td>46.81</td>
<td>28.19</td>
</tr>
<tr>
<td>20</td>
<td>8.80</td>
<td>11.20</td>
<td>0.80</td>
<td>9.13</td>
<td>50.67</td>
<td>50.63</td>
<td>29.03</td>
</tr>
</tbody>
</table>

When the capacity of a reservoir is well below its supply, it may fill or empty during the rainy season, and its useful capacity will be considerably greater than its estimated storage capacity.

(46) Table XI is given in Strange's "Storage Reservoirs," and is most useful for calculations of flood discharge based on actual values of off in inches per hour. Table XII is based on observations taken near Nagpur, in the Indian tracts, by Sir Alexander Binnie, the Min Pro Inst C E.
This gives the run-off and percentage for three catchments, classed as i, average, and bad. The good catchment approximates to that observed near Nagpur. It is based on general ideas, and will be of assistance when actual recorded stream or river discharges are available.

(66) Table XIII, derived from Strange's "Storage Reservoirs," will assist calculations for depth of water flowing down bye-washes which are so common a feature in many large storage and diversion dams.

Discharge through Syphons

(67) The head or difference of levels above and below a syphon is generally required to be ascertained the mean velocity through the barrels being a given quantity. This is sometimes taken at 15 feet per second in order to clear out all detritus, 8 feet being usual. The head is found by the following formula —

\[H = M \frac{V^2}{2g} = 0155 MV^2 = hM \]

[23]

\(h \) being the head due to the velocity \(V \), or 0155 \(V^2 \)

In this expression \(M = \left(1 + f_1 + \frac{L}{R} \right) \) in which \(L \) = length of barrel, \(R \) = hydraulic mean depth, or \(\frac{Area}{W^2} \), \(f_1 \) is the coefficient for loss of head by entry, and \(f_2 \) varies from 08 for an ideal converging entrance to 505 for an abrupt change from a wide channel into a round pipe or square culvert. This latter value, or some modification of it, is most suitable for masonry syphon barrels, \(f_2 \) the second coefficient, is that of friction on the sides of the barrel and \(a \left(1 + \frac{b}{R} \right) \).

Suitable values of \(a \) and of \(b \) must be selected from the Table below

<table>
<thead>
<tr>
<th>Nature of Barrel</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron pipes</td>
<td>00497</td>
<td>084</td>
</tr>
<tr>
<td>Cement plaster</td>
<td>00294</td>
<td>10</td>
</tr>
<tr>
<td>Ashlar or brickwork</td>
<td>00373</td>
<td>23</td>
</tr>
<tr>
<td>Rubble masonry</td>
<td>00471</td>
<td>82</td>
</tr>
</tbody>
</table>

If the converse to formula (23) is required

\[V = 8 \ 0125 \sqrt{\frac{H}{M}} \]

[24]

If velocity of approach be considered

\[H = \left(M \times \frac{V^2}{2g} \right) - \frac{V^2}{2g} \] \(= 0155 \left(MV^2 - V^2 \right) \)

[25]

Conversely \(V = \sqrt{\frac{2gH}{M} + \frac{V^2}{M}} \)

[26]
DESIGN OF IRRIGATION WORKS

For example let the syphon barrels be 6 feet long by 4 feet deep then
\[R = \frac{A}{W} = \frac{24}{14} = 1.7 \text{ nearly} \]
Let \(L = 170 \) feet then \(\frac{L}{R} = 10 \) Further let \(V \) be assumed as 15 \(f_1 \) as 5 \(a \) as 0.04 and \(b \) 23 from Table then \(f_2 = 0.04 \left(1 + \frac{23}{17} \right) = 1.545 \)
By formula (23) \(H = 0.155 \times 1.545 \times 225 = 538 \) feet
If velocity of approach * of 3 feet per second be assumed the above value of \(H \) will be reduced by 0.155 \(\times \) 9 or by 1395
\(H \) will then = 514 feet

USEFUL MEMORANDA

(68) 1 cubic foot of water = 624 lbs = \(\frac{1}{36} \) ton
1 ton of water = 36 cubic feet
Inches of rainfall = 53.3 acre feet per square mile
1 inch run off per hour per square mile = 6453 second feet = 1 cubic foot per acre per second
1 cubic foot per second = 2 acre feet (short name cu sec)
1 foot per second = 68 miles per hour
1 acre foot = 43560 cubic feet
Pressure of water per square foot = \(\frac{H}{36} \) tons

VELOCITY OF WATER

(69) \(V = \) Theoretical velocity in feet per second
\(g = \) Force of gravity = 32.2
\(\frac{1}{2g} = 0.0155 \)
\(\sqrt{2g} = 8.025 \)
\(H = \) Head of water in feet
\(V = \sqrt{2gH} = 8.025 \sqrt{H} \)
\(H = \frac{V^2}{2g} = 0.0155 V^2 \)

EDITOR'S NOTES

(61) *Velocity of Approach — This question lends itself to misconception and exaggeration. It is easier to calculate heads with much nicety on paper accuracy in practice. In the
in Fig. 1 we see that he reckons the increase of discharge, due to velocity of approach to amount to \(\frac{379.95 - 378.8}{378.8} \) = about one third of 1 per cent a negligible consideration in practice.

* In the case of a syphon on the flow on changing its direction loses the velocity of approach which is convert into visible static, i.e., \(\frac{1}{2} \)
In fact, in the case depicted in Fig. 1, where dynamic head of flow is converted mostly into static head at the dam, the propriety of making separate allowance for velocity of approach is questionable. In canals ranging up to 10,000 cusecs capacity the mean velocity is usually less than 3.5 feet per second, and the "head" due to such velocities amounts to about 1 1/8 per cent of the water-depth—a dimension well within the ordinary margin of error of measurement of flowing water, whilst, in great rivers, wherein \(\frac{V^2}{2g} \) may present a more respectable value, the difficulty of determination is correspondingly greater. Thus, in the case of a great flood which passed over the weir at Khanki, on the River Chenab, in the Punjab, in July, 1903, the maximum discharge might be computed to be 460,000, or 530,000, or 620,000 cusecs, according as the mean velocity of approach was supposed to be 0, or 6, or 10 feet per second. One engineer even put the figure so high as 750,000 cusecs, though the data of the case are so uncertain that it is impossible to be sure that the maximum discharge was more than say 550,000. The weir is about 4,000 feet long, apart from its sluices, which have 240 feet of waterway. The river upstream of it may be, when in high flood, much wider, flowing, not in a single well-defined channel, but in several separate streams—converging, diverging, or interlacing—with shoals or islands between, and although these shoals, submerged in high flood, form part of the river bed, they may be, in places, at higher levels than the crest of the weir itself. The weir is divided into eight bays of 500 feet, by piers and groynes, and the oblique set of different currents towards these groynes may affect the depth of water over crest at different places. It was impossible to navigate the river during this high flood, or to measure its cross-sectional waterway or mean velocity. The weir-crest was submerged by tail-water to a depth of 10 1/2 feet, and the sluices to 18 feet. The afflux, or difference of water level upstream and downstream of the work, was only 2 feet at right flank, and 3 feet on left flank, whilst water levels in midstream were unknown. The higher water level recorded on the left flank may very likely have been due to a set of the current towards that flank and away from the other. The gauge-readings, in fact, may have been the static representation, inter alia, of the velocity of approach. These and similar practical considerations may well make us chary of approaching the problem of head due to velocity of approach with a velocity of too much confidence in our head-work.

(H) The Backwater Surface Curve—Par (45)—This calculation has, perhaps, more of academic interest than of practical utility as it rests upon imaginary data that are rarely met with in practice.

The calculation assumes that the channel under consideration is of great and uniform width, and uniform slope and water-depth. It assumes, also, that the water is not silt-laden. Such conditions do not occur naturally in rivers, nor even in canals. The first effect of an obstruction, such as a weir, across a silt-bearing stream, is to diminish velocity and cause the water to drop its silt-burden, so that the theoretical water-depths upstream are altered by the very creation of afflux. At Narora, on the River Ganges, for instance, the river bed is shoaled up above crest-level of weir in some places upstream of it, and scoured down to foundation-level elsewhere. The course of the river upstream is, moreover, very tortuous (Fig. 33a, Chapter VI), flowing in several channels, with shoals and islands.
between them. In such circumstances the calculation for backwater curve is too fanciful for practical utility.

A curious instance of misconception in this matter of backwater-curve has been noticed recently in connection with the design of the Barrage which is now being constructed across the River Indus below the Sukkur Gorge.

As depicted in the plan (Fig. 14) the River Indus just above the town of Sukkur in Sindh forces its way through a rocky gorge in a low range of hills in two channels split up by the rock island of Bhrakkar. The combined width of these two channels is only 1,400 feet at high flood level. Further down the gorge gradually widens and at the point B two miles below the gorge the river is about 3,000 feet wide. One mile still further down the stream at C it is 5,500 feet wide and it is here that the Barrage or Dam is being built with a waterway only 4,000 feet wide. The Barrage engineers have calculated that this reduction in width from 5,000 feet to 4,000 will set up an inrush under maximum flood conditions of only 1 foot and reckoning by the ordinary formula for backwater curve they have concluded that the 1 foot inrush at C will diminish to only 3 or 4 inches at B and that it will vanish completely a little way upstream of B so that it will not affect the conditions of flow at the narrow gorge.

The calculation overlooks the fact that the channel upstream of C is not of uniform width or depth or slope and that the water under high flood conditions will be heavily laden with sand. Under such conditions the inrush instead of diminishing will increase upstreamwards in the narrow channel. Statistics recorded of water levels at A and B respectively show that under existing conditions every unit rise of water level at B is accompanied by a greater rise in the congested channel at A so that the further congestion set up at C by the Barrage of the future will undoubtedly take effect at A. The importance of this consideration lies in the risk that exists of the Indus deserting the Bhrakkar Gorge and changing its course to lower lying land which exists some miles to the right or left of it. The critics of the Barrage Project opine that the tendency of the Barrage built down stream of the gorge A will be to increase the risk of river failure. However that may be the case, in point is a signal illustration of the difficulty of application of the backwater-curve calculation in practice.

(b) The Lining Surface Curve—Par. (48)—What we have remarked above is to the academic nature of the backwater-curve speculation applies also mutatis mutandis to the case of the Lining Surface Curve. In a natural channel such a condition could not exist for long. It would set up violent erosion of the stream bed lowering the bed level so as to relitely elevate the masonry work it tail converting the latter into a weir increasing in height till equilibrium or normal current regime is attained. This is what actually happened in the Ganges Canal in its earliest working days and the remedy was found in the construction of wings or crest walls, on the brink of the masonry fills of the canal.
CHAPTER VI
DIVERSION WEIRS ON SAND FOUNDATIONS

Fig 12 - Narora Weir, Lower Ganges Canal

(1) A class of weir peculiar to India includes those erected across the great rivers of the peninsula such as the Ganges, the Jumna, the Chenab, the Jhelum and many others in Upper India and the Mahruddee Son, Kistna, Godaveri and Penner in Bengal and Southern India. These are naturally exclusively diversion weirs and are of no great height, 10 or 12 feet above normal river bed level or low water level being generally the outside limit of their height. What they lack in this respect is however made up not only in length but in width. The weir over the Son River at Dehri is 2½ miles long and those spanning the great Godaveri River with its flood discharge of over 1,200,000 second feet are nearly as long. The Okhla Weir is 250 feet wide and several others run this dimension very close. Thus it is that these canal head works rank among the largest and most important in the whole world.

There could hardly be a greater contrast between the narrow but immensely high American dams built over narrow rocky gorges amid wild and sterile surroundings and these long low Indian weirs which are generally situated among cultivated lands and a teeming population often amidst historic remains of great antiquity. The main peculiarity of these
between them. In such circumstances, the calculation for backwater-curve is too fanciful for practical utility.

A curious instance of misconception in this matter of backwater-curve has been noticed recently in connection with the design of the Barrage which is now being constructed across the River Indus, below the Sukkur Gorge.

As depicted in the plan (Fig. 14), the River Indus, just above the town of Sukkur, in Sind, forces its way through a rocky gorge in a low range of hills, in two channels split up by the rock island of Bhakkar. The combined width of these two channels is only 1,400 feet at high flood level. Further down stream the gorge gradually widens, and, at the point B, two miles below the gorge A, the river is about 3,000 feet wide. One mile still further down stream, at C, it is 5,500 feet wide, and it is here that the Barrage, or Dam, is being built, with a waterway only 4,000 feet wide. The Barrage engineers have calculated that this reduction of width from 5,000 feet to 4,000, will set up an afflux, under maximum flood conditions of only 1 foot, and reckoning by the ordinary formula for backwater curve, they have concluded that the 1 foot afflux at C will diminish to only 3 or 4 inches at B, and that it will vanish completely a little way up stream of B so that it will not affect the conditions of flow at the narrow gorge A.

The calculation overlooks the fact that the channel up stream of C is not of uniform width or depth or slope and that the water, under high-flood conditions will be heavily laden with sand. Under such conditions, the afflux instead of diminishing will increase upstreamwards in the narrowing channel. Statistics recorded of water levels at A and B respectively show that under existing conditions every unit rise of water-level at B is accompanied by a greater rise in C, that the further congestion set up at C by undoubtedly take effect at A. The impossibility in the risk that exists of the Indus deserting the Bhakkar Gorge, and changing its course to lower lying land which exists some miles to the right or left of it. The critics of the Barrage Project opine that the tendency of the Barrage built down stream of the gorge A, will be to increase the risk of river-avulsion. However that may be, the case in point is a signal illustration of a similar practice applied also, mutatis mutandis, to the case of the "Falling Surface Curve." In an earthen channel such a condition could not exist for long. It would set up violent erosion of the stream bed, lowering the bed level, so as to relatively elevate the masonry work at tail, converting the latter into a weir increasing in height till equilibrium or normal current regime is attained. This is what actually happened in the Ganges Canal, in its earliest working days, and the remedy was found in the construction of weirs, or crest-walls, on the brink of the masonry falls of the canal.
CHAPTER VI

DIVERSION WEIRS ON SAND FOUNDATIONS

Fig 1a.—Narora Weir Lower Ganges Canal

(1) A class of weir peculiar to India includes those erected across the great rivers of the peninsula such as the Ganges, the Jumna, the Chenab, the Jhelum and many others in Upper India and the Mahanuddee Son, Kistna, Godaveri and Penner in Bengal and Southern India. These are naturally exclusively diversion weirs and are of no great height, 10 or 12 feet above normal river bed level or low water level being generally the outside limit of their height. What they lack in this respect is however, made up, not only in length but in width. The weir over the Son River at Dehri is 2½ miles long, and those spanning the great Godaveri River, with its flood discharge of over 1,200,000 second feet, are nearly as long. The Okhla Weir is 250 feet wide, and several others run this dimension very close. Thus it is that these canal head works rank among the largest and most important in the whole world.

There could hardly be a greater contrast between the narrow but immensely high American dams, built over narrow rocky gorges amid wild and sterile surroundings, and these long, low Indrrii weirs, which are generally situated among cultivated lands and a teeming population, often amidst historic remains of great antiquity. The main peculiarity of these
Indian weirs is the nature of the foundations, which is mainly sand, down to great depths, perhaps 1,000 feet, or more.

Up to a quite recent period the design of such works has been subject to great uncertainty, the sections being adjusted by failure and renewal to actual requirements.

Now, however, that the principles regulating the stability of structures founded on a pervious and loose material such as sand are better understood, the practical application of these principles is simpler.

A drowned diversion weir on sand, although its height is seldom over 10 feet above the normal river bed, is not only exposed to the destructive influences of a large river in flood, but its foundation, being necessarily the sandy bed of the river, is liable to be undermined and washed out by the hydrostatic pressure of the water upheld in rear of the weir. In spite of these drawbacks, it is, however, quite practicable to design a work of such outline as will successfully resist all these disintegrating forces, and remain a permanent and solid structure.

(2) The principle which underlies the action of a head of water on a porous stratum of sand, over which a heavy impervious weight is imposed, is analogous to that which obtains in a pipe under pressure.

Fig. 1 exemplifies the case with regard to a pipe-line BC leading out of a reservoir. The head \(H \), is the difference of levels between \(A' \), a point somewhat lower than \(A \) (the actual summit level) and, \(C \), the level of the tail water beyond the outlet of the pipe. The water having a free outlet at \(C \), the line \(A'C \) is the hydraulic gradient or grade line. The hydrostatic pressure in the pipe at any point is measured by vertical ordinates drawn from the centre of the pipe to the grade line \(A'C \). The uniform velocity of the water in the pipe is dependent directly on the head, and inversely on the frictional resistance of the sides of the pipe, that is, on its length. This supposes the pipe to be straight, or nearly so, and uniform in section.

(3) We will now consider the case of an earthen embankment thrown across the sandy bed of a stream. The pressure of the impounded water will naturally cause leakage beneath the impervious earthen base. With a low depth of water impounded, it may well be understood that such leakage might be harmless, that is, the velocity of the percolating undercurrent would be insufficient to wash out the particles of sand composing the foundation of the dam. When, however, the head is increased beyond a safe limit,
the so termed "piping" action will take place and continue until the dam is completely undermined.

(4) The main determining factor in the stability of the sand formation is evidently not the superimposed weight of the dam as the sand is incompressible, although a load in excess of the hydrostatic pressure must exercise a certain, though possibly undefined, salutary effect in opposing disintegration of the sub-stratum. However this may be, it is the enforced length of percolation or the so-called creep of the undercurrent that is the real determining influence.

(5) In the case of a capillary tube, the induced velocity is inversely proportional to its length. In that under consideration the hydraulic condition being practically identical, it is the enforced percolation through the sand and the resulting friction against its particles as the water forces its way through this medium, that effects the reduction of the velocity of the undercurrent, and this frictional resistance is clearly directly proportional to the length of passage.

In the example under consideration, this length of enforced percolation is evidently that of the impervious base of the dam. The moment this obstruction is passed the water is free to rise out of the sand, and the hydrostatic pressure ceases.

(6) It is evident, therefore, that to ensure safety from undermining, this length of enforced percolation, or creep, which will be symbolised by \(l \), must be some multiple of the head \(H \); and if a reliably safe value for this factor or coefficient can be found suitable to any particular class of sand, we shall be enabled to design any work on a sand foundation with perfect confidence with regard to stability. If this coefficient be symbolised by \(c \),
Indian weirs is the nature of the foundations which is mainly sand down to great depths perhaps 1,000 feet or more.

Up to a quite recent period the design of such works has been subject to great uncertainty, the sections being adjusted by failure and renewal to actual requirements.

Now however that the principles regulating the stability of structures founded on a pervious and loose material such as sand are better understood the practical application of these principles is simpler.

A drowned diversion weir on sand, although its height is seldom over 10 feet above the normal river bed, is not only exposed to the destructive influences of a large river in flood but its foundation being necessarily the sandy bed of the river is liable to be undermined and washed out by the hydrostatic pressure of the water upheld in front of the weir. In spite of these drawbacks, it is however quite practicable to design a work of such outline as will successfully resist all these disintegrating forces and remain a permanent and solid structure.

(2) The principle which underlies the action of a head of water on a porous stratum of sand over which a heavy impervious weight is imposed is analogous to that which obtains in a pipe under pressure.

Fig. 1 exemplifies the case with regard to a pipe line BC leading out of a reservoir. The head H is the difference of levels between I a point

![Diagram](image)

somewhat lower than A (the actual summit level) and C, the level of the tail water beyond the outlet of the pipe. The water having a free outlet at C, the line IC is the hydraulic gradient or grade line. The hydrostatic pressure in the pipe at any point is measured by vertical ordinates drawn from the centre of the pipe to the grade line IC. The uniform velocity of the water in the pipe is dependent directly on the head and inversely on the frictional resistance of the sides of the pipe that is on its length. This supposes the pipe to be straight or nearly so and uniform in section.

(3) We will now consider the case of an earthen embankment thrown across the sandy bed of a stream. The pressure of the impounded water will naturally cause leakage beneath the impervious earthen base. With a low depth of water impounded it may well be understood that such leakage might be harmless that is, the velocity of the percolating undercurrent would be insufficient to wash out the particles of sand composing the foundation of the dam. When however the head is increased beyond a safe limit
The so termed "piping" action will take place and continue until the dam is completely undermined.

(4) The main determining factor in the stability of the sand formation is evidently not the superimposed weight of the dam as the sand is incompressible, although a load in excess of the hydrostatic pressure must exercise a certain, though possibly undefined, salutary effect in opposing disintegration of the substratum. However this may be, it is the enforced length of percolation or the so-called creep of the undercurrent that is the real determining influence.

(5) In the case of a capillary tube, the induced velocity is inversely proportional to its length. In that under consideration, the hydraulic condition being practically identical, it is the enforced percolation through the sand and the resulting friction against its particles as the water forces its way through this medium that affects the reduction of the velocity of the undercurrent, and this frictional resistance is clearly directly proportional to the length of passage.

In the example under consideration, this length of enforced percolation is evidently that of the impervious base of the dam. The moment this obstruction is passed the water is free to rise out of the sand, and the hydrostatic pressure ceases.

(6) It is evident, therefore that to ensure safety from undermining, this length of enforced percolation, or creep, which will be symbolised by \(l \), must be some multiple of the head \(H \), and if a reliably safe value for this factor or coefficient can be found suitable to any particular class of sand we shall be enabled to design any work on a sand foundation with perfect confidence with regard to stability. If this coefficient be symbolised by \(c \),...
then l, or the length of enforced percolation, will equal $e \times H$, H being the head of water. The coefficient e will vary in value with the quality of the sand.

(7) Fig. 2 represents a case similar in every respect to the last, only that instead of a dam of earth the obstruction consists of a vertical wall, termed the weir or drop-wall having a horizontal impervious floor $ACDB$ attached thereto which appendage is necessary to prevent erosion of the bed by the current of falling water when the weir is overtopped.

The level of the tail water is supposed to be that of the floor level, consequently the hydraulic gradient will be HB, and as in the previous case of the pipe line, the vertical ordinates of the triangle HIB will represent the upward hydrostatic pressure exercised on the base of the weir wall and of the floor.

(8) The safety of the structure is evidently dependent on the following points —

First the weir will must be dimensioned so as to resist the overturning moment of the horizontal water pressure. This has been dealt with in a previous chapter.

Secondly, the thickness i.e., the weight of the apron or floor must be such that it will be safe from being blown up or fractured by the hydrostatic pressure. And thirdly, its base length or that of the enforced percolation l, must not be less than $e \times H$ or than the product of the coefficient e with the head H.

It is evident that the value of the coefficient e must vary with the nature of the sand substratum in accordance with its qualities of fineness or coarseness. Fine light sand will be closer in texture, passing less water under a given head than a coarser variety, but at the same time fine sand will be disintegrated and washed out under less pressure. Reliable values of e, on which the design mainly depends, can only be obtained experimentally, from artificial experiments and classification of samples of sand taken from the sites of actual examples of weirs, and the records of failures due to insufficiency in length of percolation path. From these statistics a safe value of the relation of l to H, or of the coefficient e, which also defines the inclination of the hydraulic gradient, can be derived.

(9) The following values of e have been adopted for the classes of sand detailed below, the derivation of which will be explained later —

Class I. River beds of light silt and mud as the Nile $e = 18$.

Class II. Fine micaceous sand as in certain sites on Himalayan rivers and such as the Colorado in the United States $e = 15$.

* To be accurate the hydraulic gradient HD should be drawn from some point H' lower than H on the vertical AH for the same reason that in Fig. 1 it is drawn from A lower than A on the vertical AB. —E. P.
CHAPTER VI—WEIRS ON SAND FOUNDATIONS

Class III Coarse grained sands as in Central and South India

\[c = \frac{12}{2} \]

Class IV Boulders or shingle and gravel and sand mixed

\[c \text{ varies from } 9 \text{ to } 5 \]

(10) In Fig. 2, supposing that the width of the base of the apron and drop wall, or \(CD \), is found just sufficient to produce equilibrium as regards length of percolation, then the hydraulic gradient will be \(HB \). The value of \(l \) thus provided will, however, be inadequate. A factor of safety of say one half is required, so that the floor should be extended to \(E \), \(AE \) being equal to \(1.5 \times AB \). The apex of the triangle of pressure will then be moved to the point \(E \), the hydraulic gradient being \(AE \). This extension provides increased safety from the danger from piping, but enlarges the area of hydrostatic upward pressure from the triangle \(HAB \) to \(HAE \). Consequently, in addition to the element of cost, there is a distinct disadvantage in lengthening the impervious floor beyond what is requisite to ensure an absolutely sufficient length of creep.

Supposing the width of the floor to be reduced below the minimum \(CD \) or \(AB \) to \(AG \), the hydraulic gradient will then be \(HG \). This reduces the area of the triangle of pressure to \(HAG \), but failure may take place by piping, the sand substratum being gradually washed out, causing the floor to collapse.

(11) The proper profile of the apron to resist the hydrostatic pressure is evidently that of a triangle, its base being at the root or toe of the drop wall. In practice this will be a trapezoid, as the end thickness cannot well be reduced to zero. Its weight can be conveniently represented by \(t \times \rho \), \(t \) being the thickness and \(\rho \) the specific gravity of the material.

The value of \(t \) should exceed that of the upward hydrostatic pressure by, say, one third. This latter can be represented by the symbol \((H - h) \), \(H \) being the head acting on the base and \(h \) the neutralisation of pressure that is, of head, effected by the length of percolation up to this point. Let \(l \) be this length, then \(h = \frac{l}{c} \).

(12) At this juncture a few points regarding loss of weight due to displacement of immersed parts of the weir require notice.

With regard to the hydrostatic pressure on the base.

In Fig. 2, if a hole were supposed bored in the floor \(CE \) and a pipe inserted, the water would rise up as far as the hydraulic gradient \(HE \). The pressure acting on the base \(CE \) would therefore be greater than the triangle \(HAE \)—would, in fact, be the trapezoid \(HCE'E \). This is accounted for by the addition to the external head, which is \(HA \), of that due to the displacement of the floor.

* We have no evidence of the coarseness of South Indian sands i.e. no evidence in the nature of physical analysis—Ed.

† It is to be borne in mind that where Himalayan rivers issue from the mountains on to the alluvial plains their bed soil is of boulders shingle and coarse sand but that progressively downstreamwards the bed soil becomes gradually finer and lighter in proportion to distance from the mountains—Ed.
To avoid confusion the extraneous or active head of water symbolised by \(H \), which always represents the difference of levels above and below a weir or regulator will be kept distinct from that due to displacement or immersion this latter pressure being allowed for by reduction in the effective weight of the immersed body

(13) A solid material immersed in water loses as is well known a portion of its weight equal to the weight in water of the area immersed or if specific gravity be substituted for weight and if the latter \(\rho \) symbolise the specific gravity of a material when the same is immersed in water its specific gravity can be considered as if reduced by unity or to be \((\rho - 1) \)

Thus if the specific gravity of a block of masonry be \(2\frac{1}{2} \) when immersed the reduced weight can be expressed by \((2\frac{1}{2} - 1) \) \(1\frac{1}{2} \) *

(14) In Fig. 2 when the low water level is at \(L \) the floor is immersed and its effective weight is as \(l (\rho - 1) \) \(l \) being the thickness. When the water level rises to \(LL \) the state is in no way altered as the excess of upward pressure above what it was at the lower level is compensated by an equivalent load of water lying above the floor.

When the low water level is at \(CDF \) the weight is unimpaired when half way between \(F \) and \(F \) half of the floor will be considered as of lower specific gravity than the other half.

If the water level were to fall below the level of the base of the floor as to \(JJ \) the sand substratum being porous when the latter is under pressure as from a head of water held up by the weir the water will rise up to the base of the impervious floor thus practically reducing the head from \(HJ \) to \(HC \). This is conditional on its being contained in the pressure area \(\epsilon \) below the hydraulic gradient. The head acting on the apron cannot be measured to any depth lower than the base of the latter.

(15) Another most important point requiring notice is the relative position of the apron. With regard to the drop wall in Fig. 2 supposing the impervious floor were extended backwards to \(A \) and \(AA \) made \(= BF \) then the action of the head of water is thrown back from \(H \) to \(H \) and the hydraulic gradient will be \(HB \) parallel to \(HL \) and the statical condition in no wise altered.

Thus we see that the position of the drop wall with reference to the floor or apron is immaterial as regards foundation stability but on the other hand a certain length of solid apron in front of the drop wall is necessary to protect the bed from erosion so that only a proportion of the floor length can well be placed in rear of the drop wall.

(16) This rear projection is termed the rear apron in contradistinction to the fore apron or floor proper lying in front of the drop wall. The rear apron is in an advantageous position. It is somewhat protected from

* It should be borne in mind how ever that ordinary brick or clay and concrete when saturated with water may be nearly 20 per cent less or than when dry. —Ed
erosive* action except from cross currents, and for this reason can be constructed of less expensive material than the fore apron. On the other hand, it must be impervious and must have a watertight connection† with the drop wall.

(17) From the above, it would seem that the rear apron would be effective if only a thin, impervious layer, but weight is necessary to some extent in order to prevent the possibility of the undercurrent partaking of the nature of a surface current, and so losing the efficacy of the frictional resistance of the sand. For the same reason it is always advisable, as has already been noted, to make the effective weight of the fore apron somewhat in excess of actual requirements as regards hydrostatic pressure.

Weight in these submerged structures is always a desideratum, and is only limited by the necessities of cost.

(18) We have seen that the rear apron has, as its chief function the neutralisation of statical pressure, whereas the fore apron or floor in addition to its functions in a hydrostatical sense has to provide a solid cushion for resistance to the erosive force of the current of falling water for which purpose also width is a necessity. The width need not be all composed of impervious masonry, but can be formed in the lower portion, or talus, of loose riprap. The total width is dependent on several considerations, and must remain more or less a matter of individual judgment, although certain approximate rules can be deduced from examination of sections of existing works of similar character which will prove reliable guides to the designer. This point will come up again later, in pars (25) and (27).

(19) The line of creep, we have hitherto considered has been a horizontal one. If vertical depressions are placed below the base of the floor, or apron the line of percolation may be forced to follow round these obstructions and may not, as might be imagined take the line of least resistance. Thus if an impervious line of sheet piling or a curtain wall of masonry as one of undersunk hollow blocks connected together by piling be inserted below the floor, as near C in Fig 2 the line of creep may be measured down one side of the vertical obstruction and up the other side. The added length of creep will thus be twice the depth of the curtain.

The insertion of a curtain wall of any kind is therefore a most valuable means of increasing the length of the enforced percolation and of thus immediately reducing the pressure at any part of the base. The effect of vertical depressions in the floor on the hydraulic gradient line is to break the continuity of the hypothenuse of a triangle of pressure by steps each step being equal to the depth of the vertical obstruction divided by the coefficient or if the obstruction is sheet piling or a very narrow wall the depth at this point will be twice the above, or 2l - c. It is however

* Yet at Narora it was completely scoured away. See par. (8) infra—Ed
† But at Okila War on the River Jumna loose stone dumped into the stream up stream of the weir will suffice for all purposes of efficiency—Ed
considered that the efficacy of curtain walls in this respect is dependent on their not being spaced nearer to each other than twice their depth.

(20) A practical example of the method of applying the principles already set forth will now be given in Fig. 3 under the conditions actually prevailing in the Narora Weir on the Ganges River. The work is of the direct overflow type which will be classified as type A. The data on which the design is based are as follows: Sand class 2—coefficient of friction \(c \) = 0.5, \(H \) or difference of summit and of low water level—the latter always symbolized by the letter \(H \)—12 feet then the required lengths of crest or of \(L \) must be \(c > H - 12 \) and \(12 - 102 \) feet. We have now to decide what proportions of the length \(L \) are to be placed in the fore apron in the rear apron and in the vertical sheet piling. The minimum water width of the fore apron is naturally a leading consideration in this problem. This width of apron is affected in two ways firstly by the nature of the river bed represented by its coefficient \(c \) and secondly by the obstruction offered by the weir walls. \(c \) by the height of the permanent crest, excluding the crest shutters which latter are only in use during low water. The height \(H \) of the shutter crest above the floor is the depth of the drop will be symbolized by \(H^* \) in order to differentiate it from \(H \) the head of water. In some cases \(H^* \) and \(H \) are identical.

(21) Taking Narora as standard the following formula has been evolved based on the theory that a proportion of \(4c \) is a proper width of a weir of 12 feet in height and for greater or less heights the length is subject to variation in proportion to the square root of the heights of shutters above floor or as \(\sqrt{\frac{H^*}{12}} \). If \(W \) is the width of floor or apron, then

\[
W = 4c \times \sqrt{\frac{H^*}{12}} \quad (1)
\]

In the sloping apron type B (side post) \(H \) is taken for \(H^* \).

The use of \(c \) as a factor makes the width some function of the quality of the sand which is admittedly a sound proposition.
(22) In designing a weir the dimensions relating to \(l \) should for convenience sake be all multiples of the coefficient \(c \) as by this means the neutralisation of head at any point is at once ascertained each length in feet equal to \(c \), representing the neutralisation of 1 foot of head.

(23) In the present instance to revert to the design Fig. 3 the width of the fore apron will be according to formula (1) \(4c\sqrt{13} = 4c = 4 \times 15 = 60 \) feet. This will leave \(13 - 4 = 9c \) to be disposed of in the rear apron and in the sheet piling. If the latter be given a total depth of \(2c = 30 \) feet for two lines of curtains a further item of \(4c \) can be deducted leaving \(5c \) for the width of the rear apron. This width is measured backwards from the toe of the drop wall and is 75 feet. Out of the 30 feet allowed to the sheet piling a depth of \(15 \) feet will be placed below the weir wall equivalent to an effective length of \(2c \). The remainder will be situated at the toe of the fore apron where it will serve another purpose in addition to its ordinary function viz. of forming a protective barrier at the end of the masonry floor in case the loose stone continuation is washed out.

Thus the full required value of \(l \) or of \(192 \) feet is provided. It may be noted that the small vertical drop due to the thickness of the rear apron as well as that due to the thickness of the toe of the fore apron has been neglected. It will be seen that there are two steps in the gradient line (which is \(1 \) in \(15 \)) one of \(2 \) feet at the incidence of the rear sheet piling and another also of \(2 \) feet at the termination of the floor. The designer can of course vary this arrangement at pleasure by reducing the vertical curtains and increasing the rear apron.

(24) As regards the thickness of the parts the rear apron is composed of clay puddle overlaid with stone riprap, a construction which provides a heavy impervious platform economical in point of cost but not as fool proof as if constructed of masonry. It is given a thickness of 5 feet.

We next come to the drop wall provided with crest shutters 3 feet deep which collapses automatically when freshets come down. Its base thickness is made 10 feet or

\[
\frac{Hc + d}{\sqrt{\rho}}
\]

\(d \) being that depth of film passing over the crest which is reciprocal to a down stream water level at the crest line. \(d \) in this case is calculated to be 3^{1/2} feet. The \(\sqrt{\rho} \) in this case is \(\frac{1}{4} \) as \(\rho \) is taken for the brick wall at a value of \(1.8 \). This formula of \((H + d) - \sqrt{\rho} \) applies to all dwarf submerged weirs (tide par (42) Chap II). \(H^* \) is shutter crest above floor \(H \) is the head \(H^b \) weir wall crest above LWL \(H^c \) is the height of the masonry drop wall above floor.

* The accident to Narora Weir in March 1898 resulted from the scouring a way of the apron by currents parallel or diagonal to the weir — Ed
(25) We now come to thickness of the fore apron at its root or commencement. This is really the most critical point in the whole design. This thickness can be varied at pleasure by the values given to the rear apron and to the rear sheet piling and is a matter always kept in mind when deciding what these values should be. This thickness must not as a rule be less than 4 or 5 feet except in very low waters and should not much exceed the higher dimension either is otherwise the fore apron will become unnecessarily costly. Up to this point the head (H) neutralized by the length of creep is equivalent to that of 7 or 7 feet of head this leaves a value of $(H - h) = 6$ feet of upward water pressure. We have already noted that the effective weight must exceed that of the hydrostatic pressure by at least one-third. The floor is immersed and its specific gravity considered as reduced by unity consequently the thickness of the floor (t) at this point can be expressed in the following formula

$$t^* = \frac{H - h}{(p - 1)} \text{ or } \frac{6}{1} = 6.4 \text{ feet}$$

(3)

In (3) if the floor is immersed the denominator will be $(p - 1)$ if not it will be p. It has been made 64 feet thick tapering to 34 feet at the end—average 5 feet. The pressure trapezoid is shown in the space enclosed between the surface of the floor and the grade line. The terminal thickness of the floor 34 feet may be considered almost as a minimum. The insertion of the 15 feet deep sheet piling here causes 2 feet hydrostatic pressure at the toe of the apron. There is no objection to this as the apron is capable of withstanding 34 feet pressure. In fact the arrangement may be considered as utilizing a part of the excess weight at this point. Weight is however desirable solidity being required in the fore apron apart from purely hydrostatic considerations.

(26) There now only remains the packed stone pitching or riprap which forms the talus of the weir body. The width of this is dependent on the same kinetic considerations which influence the width of the masonry floor but with two others in addition. These are firstly the nature of the river bed which will as before be represented in the formula by its coefficient secondly H^b the height of the permanent obstruction above L.W.L. Where the floor surface is at L.W.L H^b will equal H where however it is raised as in Figs. 5 and 6 and where in other types there is no floor but an inclined apron it will be the height of the obstruction above L.W.L. or normal bed level which may be higher. Thus where no crest shutters are used H^b will equal H. The second matter requiring consideration is the flood discharge per foot run of weir which is symbolised by the letter q. This item varies considerably from 60 second feet over the Dehri Weir (Fig 17) to 244 second feet over the Madhy (Fig 22) and must necessarily have considerable influence on the width of the talus. Narora Weir (Fig 4) will again be

* Bearing in mind however that brick masonry or concrete when saturated with water is increased in weight thereby to the extent of say 9 per cent bearing in mind also the transverse strength of such material the factor (4) might reasonably be omitted from formula (3). —Ed.
taken as a guide in framing a formula generally suitable for all conditions. The end of the talus measured from the drop wall was originally 170 feet. It is however, deemed that a width of 150 feet or of 10c would fairly represent a proper average value for (L) or the distance of the toe of the talus from the drop wall.

(27) The extreme width of the apron including talus is clearly independent of that appropriated to the floor or masonry apron. Its width L is

$$L = 10c \sqrt{\frac{H^b}{10}} \times \sqrt{\frac{q}{75}}$$

Table I—Formula $L = 10c \sqrt{\frac{H^b}{10}} \times \sqrt{\frac{q}{75}}$ showing actual and calculated values of L or floor and talus width

<table>
<thead>
<tr>
<th>River</th>
<th>Name of Work</th>
<th>Type</th>
<th>c</th>
<th>H^b</th>
<th>q</th>
<th>Calculated value of L</th>
<th>Actual value of L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganges</td>
<td>Narora</td>
<td>A</td>
<td>15</td>
<td>10</td>
<td>56</td>
<td>200</td>
<td>170</td>
</tr>
<tr>
<td>Colerun</td>
<td>Colerun</td>
<td>A</td>
<td>12</td>
<td>4.5</td>
<td>100</td>
<td>106</td>
<td>72</td>
</tr>
<tr>
<td>Vellar</td>
<td>Pelandora</td>
<td>A</td>
<td>9</td>
<td>1.1</td>
<td>140</td>
<td>180</td>
<td>101</td>
</tr>
<tr>
<td>Tampraparni</td>
<td>Srivakantham</td>
<td>A</td>
<td>12</td>
<td>6</td>
<td>90</td>
<td>10^2</td>
<td>105</td>
</tr>
<tr>
<td>Chenab</td>
<td>Khanki</td>
<td>B</td>
<td>15</td>
<td>11.5</td>
<td>150</td>
<td>275</td>
<td>170</td>
</tr>
<tr>
<td>Jhelum</td>
<td>Jhelum</td>
<td>B</td>
<td>15</td>
<td>11.5</td>
<td>150</td>
<td>225</td>
<td>166</td>
</tr>
<tr>
<td>Pennét</td>
<td>Adumapali</td>
<td>B</td>
<td>12</td>
<td>8.5</td>
<td>184</td>
<td>172</td>
<td>184</td>
</tr>
<tr>
<td>Vellor</td>
<td>Vellor</td>
<td>B</td>
<td>12</td>
<td>9</td>
<td>300</td>
<td>228</td>
<td>232</td>
</tr>
<tr>
<td>Sangam</td>
<td>Sangam</td>
<td>B</td>
<td>12</td>
<td>8</td>
<td>147</td>
<td>151</td>
<td>145</td>
</tr>
<tr>
<td>Godavari</td>
<td>Dauleshiwaram</td>
<td>B</td>
<td>12</td>
<td>13</td>
<td>100</td>
<td>158</td>
<td>217</td>
</tr>
<tr>
<td>Jumna</td>
<td>Okhla</td>
<td>C</td>
<td>15</td>
<td>10</td>
<td>60</td>
<td>140</td>
<td>250</td>
</tr>
<tr>
<td>Kristna</td>
<td>Beswada</td>
<td>C</td>
<td>12</td>
<td>13</td>
<td>216</td>
<td>233</td>
<td>257</td>
</tr>
<tr>
<td>Són</td>
<td>Dehri</td>
<td>C</td>
<td>12</td>
<td>8</td>
<td>66</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Mahanadi</td>
<td>Jobra</td>
<td>C</td>
<td>12</td>
<td>10</td>
<td>140</td>
<td>163</td>
<td>143</td>
</tr>
<tr>
<td>Madaya</td>
<td>Madaya</td>
<td>C</td>
<td>12</td>
<td>10</td>
<td>280</td>
<td>180</td>
<td>235</td>
</tr>
<tr>
<td>East Nara</td>
<td>Jamrao</td>
<td>B</td>
<td>15</td>
<td>7</td>
<td>10</td>
<td>43</td>
<td>110</td>
</tr>
</tbody>
</table>

Consequently measured from the drop or crest wall. The formula will then become—

$$L = 10c \sqrt{\frac{H^b}{10}} \times \sqrt{\frac{q}{75}}$$

(4)

For sloping aprons a somewhat higher factor viz. 10c or 11c might be adopted.

This formula is grounded on the theory that the width L varies with the square root of the height of the obstruction (H^b) and with that of the unit flood discharge (q). The standard being what these values viz. 10 and 75 respectively are in Narora Weir. This height H^b as already stated is equal to H_c when there are no crest shutters and $L W L$ is at floor level and is always the depth of $L W L$ below the permanent masonry crest of the weir. This
not be likely to exceed being mostly formed of brick, concrete. In consequence the effective specific gravity is only unity. This figure the floor would be taken at 2, which is 5 feet. The specific gravity of the floor is 1.5 in weight. Therefore, the floor, which is 1 in 12 and in addition to this, works out to less than 1 in 2. The hydraulic gradient, as per figure 4, represents the proper base length, or value of 1 suitable for work, i.e., 1.

(29) The Narora Weir is constructed with the most instructive object of the existing works compared with the existing. The table on p. 155 shows the same results readily and in consequence, with actual values and comparisons.
when the rear apron of puddle protected by stone riprap was washed away. The diagram, Fig. 4b, clearly shows the excessive pressure in the floor, which is 12 feet of water upstream * of the weir.

(29) In restoring the work, the rear apron was run out backwards, as shown dotted in Fig. 4, to a distance of 80 feet beyond the drop wall, and was made 5' feet thick, of puddle covered with riprap and provided near the weir wall with a solid masonry covering. The puddle foundation also was sloped down to the level of the floor base, so as to form a sound connection with the drop wall. At its extreme termination sheet piling was driven to a depth of 12 feet below floor level, i.e., below R L 572. The grouted pitching in the fore apron was relaid dry, the first 10 feet only having been rebuilt in mortar, so as to form a continuation of the impervious floor. This had the effect of reducing the pressure on the floor. A water cushion, 2 feet deep, was formed over the floor, by building a dwarf wall of concrete (shown on the section) right along its edge. This adds 2 feet to the effective value of \(t_2 \), and is given credit for in the diagram Fig. 4c.† In this diagram it will be seen that the hydraulic gradient now works out at 1 in 15, the value of \(c \) which has been adopted for similar light sands, and from which that of others, as classes 1 and 3, have been deduced.

(30) Some brief explanation will now be given of the diagram and the graphical method of construction.

Take Fig. 4. The first step is to ascertain what is the hydraulic gradient of the section as it stands. The first incidence of the water pressure is at the point \(A \). From this starting point the horizontal length or width of the impervious rear and fore aprons up to \(B \) is 123 feet. To this must be added the vertical components of \(I \), which are 7 feet at the base of the drop wall and 24 feet or twice the depth of the curtain wall, at the termination of the floor proper. This makes the total value of \(I \) to be 123 + 31 = 154 feet.

This is then measured out from \(A \) to \(C \) in Fig. 4a. The line \(AC \) then drawn is the hydraulic gradient of 1 in 15, or 1 in 11.8. Now from \(C \) the vertical components are set out backwards in reverse order, thus the 7 feet depth is first marked, then the two 12 feet lengths, this last measurement coinciding with the point \(B \).

The outline of the area of water pressure is traced by drawing lines parallel to the hydraulic gradient \(AC \) from these several points till they intersect the verticals through the positions to which they respectively belong. Thus, from \(A \) the hydraulic gradient continues unaffected until the drop wall is reached, here a step occurs. The next line is drawn from the 7-foot point near \(C \), parallel to \(AC \). This line continues till the curtain wall is reached, here another step down occurs, fixed by a parallel drawn up from the end of the 12 feet measured at the other side of the curtain, another step.

* Pressure gauges inserted in the floor, showed that on March 26th, 1898, the hydrostatic head under the floor at the base of the drop wall stood at 30 feet above the floor head.
takes place by the intersection of the last parallel line which continues down meeting the base at the termination of the impervious apron. The area enclosed between the stepped sloping lines and the horizontal base evidently represents that of the water pressure acting below the base of the fore apron. Over this the area of resistance (hatched closely) is now drawn the depths being \(t (p - 1) \) or the actual thickness multiplied by the specific gravity reduced by unity, the floor being below 1 WL and consequently immersed.

In this the value of \(p \) for the floor properly taken at 2 while that of the rough grouted block kankur pitching at 1.7. The depth \(t_p \) is therefore equal to the actual thickness of the floor in the first case, but is less in the grouted portion.

The unbalanced water pressure can now be seen at a glance.

The other diagrams are all constructed on the same lines. Comparison between them is most instructive as the weak points in the original section and the means whereby the deficiencies were made good are at once demonstrated to the eye.

We shall proceed to further analyse some other sections pointing out deficiencies suggesting improvements and occasionally producing an alternative design embodying the above.

(31) The section of the Burra Weir Fig 5 offers some points of interest. It is on the Mahanuddee system of which the Jobra Weir Fig 18 is the principal head work. The value of \(e \) is therefore 12. The floor was originally built shorter than it is at present but the talus was washed away and had to be renewed with a prolongation of the floor itself. This is an example of an overall weir type A with the surface not at LWL as in the last case but raised above it to the extent of its thickness so as to avoid wet construction and is termed type A. In all such cases the proportionate hydrostatic stress on the floor is greater when the latter is just submerged than it is with the higher pressure.

The head measured from summit level \(A \) which is also crest level to LWL (B) is 12 feet. This will require a value of \(t \) or of \(t/H \) of 12 \times 12 = 144 feet. In the pressure diagram Fig 51 the actual value is only 112 feet giving an hydraulic gradient of 1 in 9.3.

When the floor is submerged the tail water to effect this must rise 41 feet to \(D \) the reciprocal depth of film over crest or \(d \) to produce this rise is estimated to be about 2 feet. The summit level will then be at \(C \). The pressure diagrams of both cases are shown in Figs 5a and 5b. In 5a the balance pressure on the floor near the toe of the weir wall is \(t_p - (H - h) = (9.7 - 9) = 0.7 \)

In Fig 5b the balance pressure at the same point is \(5.4 - 6 = -6 \) feet. At the end of the floor in Fig 5a it is \(6 - (1.3) = +4.7 \) feet and in 5b is \(3 - (1.3) = +1.9 \) feet only.

Thus we see that the floor is strained more with the lower than with the greater head. On the other hand with the lower head Fig 5b the hydraulic gradient is flatter being 1 in 11.6 to 1 in 9.3 of 5a.

(32) In all cases where the floor is founded above LWL it is necessary to test the thickness by formula (3) for another value of \(H \) which occurs
when the floor is under water. This may be less than before, but may have a greater effect owing to the submergence of the floor.

The greatest difference of levels always occurs when the summit level is at crest level and the tail channel empty, and this maximum possible
stational head is the value of \(H \) from which the length of creep \(l \) is calculated. In this design the floor requires thickening at its root and widening or else has to be provided with deep vertical curtain walls. According to formula (1) par (21) the width with \(c = 12 \) should be \(48\sqrt{7} = 40 \) feet, nearly. It is actually 50 feet although the last bay is not all formed of solid masonry. In remodelling a section of this kind a rear apron should first be provided. Concrete sheet piling may be substituted for the under sunk blocks.

(33) Fig 6 is the profile remodeled according to the author's views. The fore apron is made 31c wide, or 42 feet. A row of piling of a depth of 12 feet (= c) will be placed at the end of the apron. This is equivalent to a length of creep of 2c. Consequently, the fore apron takes altogether 51c in length leaving \(12 - 5\frac{1}{2} \) 61c for the rear apron and rear sheet piling which will be made 4c and 21c respectively. The thickness of the apron at the toe of the weir wall will be calculated from formula (3) with a reduced head of CD or of 9 5 feet. The latter dimensions will thus be adapted. The apron will taper to a thickness of 3 feet at its extremity and will be horizontal at the base inclined on the surface.

The talus will slope down to LW I, tapering from 4 to 3 feet thickness. The width of the talus calculated by formula (4) par (27) will be 10c \(\sqrt{\frac{H^5}{10} \times \frac{q}{75}} \) which works to \(120 \times 11 = 132 \) feet in which \(H^5 = 12 \) feet \(c = 12 \) and \(q \) is taken as 75 second feet.

The revised section would it is believed cost less than the original. The raising of the floor above LW I although it undoubtedly usurps the waterway to a certain extent results in considerable economy. If the floor surface were placed lower it would have to be not only thicker but longer and the construction being below spring level would be more costly. This type of raised floor will, as already noted, be classed as a sub-type of A viz. as type \(\Lambda_2 \).
(34) Fig. 7 is of a low weir of type A on the Upper Colerun River in the Madras Presidency. The original work was also built with too short a floor, subsequently lengthened to its present dimensions. This shows that these works were designed haphazard in fact, as far as is known rules for guidance in design based on definite principles are now set out for the first time.

The principle of length of percolation influencing design is not the author's invention but its practical application has never hitherto been rendered available by the promulgation of formulas suitable to the varying conditions met with in practice.

The Colerun Weir has lately been entirely rebuilt in rear of the present site, and is changed to an open regulator with 25 feet spans and roller counterbalanced gates operated by gear the present floor forming part of the new work. It is believed that the head of water has also been considerably increased. A photograph of the piers and gates is given in.

![Diagram of Colerun Weir](image)

Fig. 7.—Colerun Weir. Discharge 251,000 second feet. Length 2,926 feet.

Irrigation Works of India (Buckley) which is decidedly useful but a working drawing, if even a rough diagram, would be much more so.

(35) The next three examples will be of another type designated type B. In these weirs there is no direct vertical drop the fore apron not being horizontal but sloping down from the crest to the L W L or to a little below it, the talus beyond being either also on a flat slope or else horizontal.

In the modern examples of this type which will first be examined the height of the permanent masonry weir wall is greatly reduced with the object of offering as little obstruction as possible to the passage of flood water.

The canal summit level is attained by means of deep crest shutters. In the Chenab Weir (Fig. 8), the weir or rather crest wall is 7 feet high above L W L, while the shutters are 6 feet high. It therefore holds up 13 feet of water, much the same as was the case with Narora Weir.

The object of adopting the sloping apron is lightness and cheapness of construction and reduction of hydrostatic upward pressure. The disadvantage of this type lies in the contraction of the waterway below the breast wall which causes the velocity of overfall to be continued well past the crest. With a direct overfall on the other hand, a depth of 7 feet for

* Increased to 11.5 feet in the year 1916 or to 17.5 feet up to top of shutters.
water to churn in would be available at this point, thus checks the flow and the increased area of the waterway rendered available must reduce the velocity. For this reason although the action on the apron is possibly less than on the talus and river bed, beyond must be greater in type B than in the drop wall type.

(36) This work, like Narora failed for want of sufficient effective base length and it consequently forms a valuable object lesson.

As originally designed only a short rear apron sloping down up stream at 1 in 3 of stone behind the crest wall was provided. The value of l up to the termination of the grouted pitching was but 108 feet, whereas it should have been $c \times H$, or $15 \times 13 = 195$ feet. The hydraulic gradient as shown in Fig 81, was only 1 in 8.3. This neglects the small vertical component at the breast wall. In spite of this deficiency of effective base width, the floor did not give way for some years until gradually increased piping beneath the base caused its collapse.

Owing to the raised position of the apron it is not subject to high hydrostatic pressure. At its commencement it is 10 feet below the summit level and 9 feet of water acts at this critical point, this is met by 4 feet of masonry submerged of specific gravity 2, which almost balances it. Thus the apron did not blow up, as was the case with Narora, but collapsed.

* But see Editor's Note (O) at end of this Chapter - En

† But at the time of the accident the water level up stream of weir was only 766 and down stream 72, which indicates a head of only 4 feet. The water stood only 4 feet deep on weir crest too low a head to have caused piping under a crest wall 8 feet deep and under a masonry floor 4 feet thick and 80 feet following completion. See Editor's Notes at end of this Chapter - FD.
(37) Some explanation of the graphical pressure diagram Fig 8a is required, as it offers some peculiarities differing from the last examples. The full head, or H, is 13 feet. Owing however, to the raised and sloping position of the apron, the base line of the pressure area will not be horizontal, coinciding with the L.W.L., but will be an inclined line—from the commencement a as far as the point b, where the sloping base coincides with L.W.L., from b onward, the base will be horizontal. With a sloping apron, the pressure is pretty well uniform, so that the water pressure area is not wedge-shaped but approximates to a rectangle, the apron therefore is also properly rectangular in profile, whereas in the overall type the profile is, or should be, that of a truncated wedge.

(38) After the failure of this work, the restoration was on very similar lines to that at Narora. An impervious rear apron 70 feet long was con-

![Diagram](image-url)
Fig 8b—Sketch Plan of Khanka Head Works

structed of puddle covered with concrete slabs, grouted in the joints, a rear curtain consisting of a line of rectangular undersunk blocks 20 feet deep was provided. These additions reduce the gradient 1 in 16. A site plan of the weir is given in Fig 8b.

(39) The Jhelum Weir (Figs 9 and 9a) is another example of type B. In this case the hydraulic gradient is now 1 in 22, affording large superfluity of stability. If all the lines of curtain walls were abolished and one line of
sheet piling below the breast wall of a depth of 15 feet substituted, the hydraulic gradient would be reduced to a more reasonable ratio of 1 in 16.

The value of L, or distance of toe of talus from the crest wall, measures 135 feet. According to formula (1) $c = 15$, $H^b = 6$, and $g = 135$. It should be therefore $10 \times 15 \times \sqrt{\frac{6}{10}} \times \sqrt{135 \over 75} = 160$ feet, which is not a very close correspondence. A site plan of the head works is given in Fig. 9b which is most instructive.

(40) Another instance of the same type is that of the Jamrao weir (Fig. 10). The head here is 7 feet, requiring a base length, or value of l, of $7 \times 15 = 105$ feet; it is actually 167 feet, excluding the wooden sheet piling in the rear. This gives a gradient of 1 in 24, which is in excess of requirements. The diagram in Fig. 10a shows the effective floor weight at the critical point of the apron, which is here beyond the second inset, to be 6 feet, being 3 feet of brickwork at specific gravity 2 in submerged. The water pressure is 4.75 requiring one-third excess, $\sqrt{12,63} = 112.63$ feet from the point where the surface slope of the apron intersects the LWL, the whole floor is submerged and consequently l^p is only 3 feet at which value it remains until the fore curtain is reached. If the tail water rose to weir crest level and the shutters were still up (a possible contin-

* This figure should be 155 including a talus of stone 50 feet long at the tail end. And g should be 150 which makes the calculation $10 \times 15 \times \sqrt{6} \times \sqrt{150 \over 75} = 168$ feet. In the year 1918 the weir shutters at end of this Chapter.
gency), the head acting below the apron would be \(4 - 3\frac{1}{2} = \frac{5}{2}\) foot only. With the crest shutters down, the depth \(d\) above crest would not exceed 2 feet.

Material for loose stone filling was not obtainable at this site, so that the rear apron had also to be built of brickwork and the talus constructed of concrete blocks.

The width of the masonry apron according to formula (1) should be

\[40\sqrt[13]{\frac{H^3}{13}}\]

Here \(H^3 = H = 7\) and \(W\) works out to \(4 \times 15 \times 75 = 45\) feet.

It is actually 70 feet. The width of talus from crest wall (formula (4)) should be \(\frac{110}{10} \times \sqrt[7]{\frac{10}{75^2}} - 43\) feet. It is actually 110 feet.

(41) Another example of the same type is furnished in Fig 11 of the Adimapali Anicut. This work, which is of an older pattern, is not provided.
with the usual collapsible crest shutters. Under such conditions the hydrostatic stress on the underside of the apron has generally a greater effect when the down stream water level is at crest level than when the channel is empty although the head is less. This is accounted for by the reduction of effective weight owing to submergence. The hydraulic gradient works out to 1 in 12.6 if half value only is accorded to the circular well curtains which are not perfectly watertight. When the tail channel is empty the head \((H)\) on which the value of \(c\) must always be calculated is 81 feet but as the root of the sloping apron is situated at 4 feet above LWI the head acting on the base there is but 45 feet. This amount is further diminished by the loss of head \((H)\) due to percolation or by the length of creep up to this point divided by \(c\) which amounts to \(\frac{14}{12.6} = 1.1\) foot leaving a balance of 34 feet. The pressure is met by the resistance of \(f_p\) or by \(4.5 \times 2 = 9\) feet the difference being \(9 - 3.4 = 5.6\) feet in favour of stability.

This work is situated high up on the Penner River and is subject to very heavy floods the unit foot discharge of which amounts to 184 second feet a quantity 21 times greater than that of the Ganges at Narora. These abnormal conditions will necessarily affect the design in the increased width of apron and talus.

The width of the fore apron is 60 feet. According to formula (1) it comes to 45 feet. This discrepancy is easily accounted for by the abnormal conditions prevailing. With regard to the talus formula (4) makes allowance for high unit flood discharge. According to this formula taking \(10\) and not \(10\) as the multiplier of \(c\) par \((7)\) \(L = 10c \times \sqrt{\frac{8.5}{20}} \times \sqrt{\frac{184}{75}} = 180\) feet. It is actually 184 feet.

(42) The previous examples of types A and B have all been cases where the weir has an appended an impervious floor which is subject to hydrostatic pressure. There is another very common type which will be termed C in which there is no impervious floor and the material which composes the body of the weir is not solid masonry but a porous mass of loose stone filling the
only impervious parts being vertical, not horizontal walls. In spite of this apparent contrariety it will be found that the same principle, viz., that of length of enforced percolation, influences the design in this type in the same way as in the others we have been considering.

Fig. 12 represents a wall upholding water to its crest, and resting on a previous substratum as sand, gravel, or boulders, or a mixture of all three materials. The hydraulic gradient is \(AD \) the upward pressure area, \(ACD \) and the base \(CD \), is the line of percolation. Unless this base length is equal to \(AC \) multiplied by the coefficient obtained by experiment, piping will set in and the wall will be undermined.

Now, as shown in Fig. 13, let a mass of loose stone be deposited below the wall. The weight of this stone will evidently have an appreciable effect in checking the disintegration and removal of the sand foundation. The water will not have a free untrammelled egress at \(D \), it will, on the contrary, be compelled to rise in the interstices of the mass to a certain height, \(FE \), which is determined by the extent of the obstruction caused to the flow.

The resulting hydraulic will now be \(AE \), flatter than \(AD \) but still too steep for permanency.

(43) In Fig. 14 the wall is shown backed by a rear apron of loose stone and the body extending to \(F \). The water has now to filter through the rear.

* It should be noted however, that the author has assumed a much higher level of tail water in Fig. 13 than in Fig. 12 which materially affects the comparison. — Ed.
apron underneath the wall and up through the stone filling in the fore apron. During this process a certain amount of sand will be washed up into the porous wear body, and the loose stone will sink, until the combined stone and sand forms a compact mass offering an obstruction to the passage of the percolating water much as, or more than exists in the sand itself, and possessed of far greater resisting power to disintegration. This will cause the level of water at E to rise until equilibrium results. Where this is the case, the hydraulic gradient is flattened out to some point G near F. If a sufficiently long body is provided the resulting gradient will be equal to that found by experiment to produce permanent equilibrium. The mass after the sinking process has finished, is then made good up to the original profile, by fresh stone filling. Next F, the toe of the slope, the stone offers but little resistance either by its weight or depth, so it is evident that the slope of the prism should be flatter than that of the hydraulic gradient.

The same action takes place with the rear apron, which soon becomes silt-charged so as to be impervious, or nearly so, to the passage of water, but until silt is deposited in the river bed behind, as will eventually occur right up to crest level, the thin portion of the rear slope as well as the similar portion of the fore slope near the toe cannot be counted as effective. Consequently, of the whole base length CF, roughly about one-quarter can be deemed inefficient as regards length of percolation. As the consolidated lower part of the body of the wear gains in consistency, it can well be subject to hydrostatic pressure. Consequently the value of tf of the mass should be in excess of that of (H - h), just as was the case with an impervious floor.

(44) In Fig 15 a further development is effected by the introduction of vertical body walls of masonry in the pervious mass of the fore apron. These impervious obstructions materially assist the stability of the foundation, so much so that the process of underscour and settlement, which must precede the equilibrating of the opposing forces in the purely loose stone mass, need not occur at all, or nothing like to the same extent. If the party walls are properly spaced, the surface slope can be that of the hydraulic gradient itself and thus ensure equilibrium. This is clearly illustrated in Fig 15. The water passing underneath the wall base CD, will rise up to the level F, the point E being somewhat higher, and similarly percolating under the other
walls through the sand substratum, will fill up all the partitions with water. The head AC will therefore be split up into four steps.

The value of the staunchness to percolation of the rear apron is so marked that it should be rendered impervious by a thick underlayer of clay, and not left to more or less imperfect surface silt stanching as has hitherto been the case. The specific gravity of stone filling with 50 per cent void is about 1.3. When immersed, this will be reduced to 8, for the following reason: the specific gravity of the solid stone is 2.6, when immersed, 1.6. Divide this by 2 as half is void the result is 8. In cases where it is convenient to assume the full head acting on the whole work, the weight of material, plus that of the water filling the interstices, will represent the actual overlying weight. This can be considered as having a specific gravity of $8 + 5 = 13$.

This happens to be identical with that of the unsubmerged mass, which is but a coincidence.

(45) Fig 16 is the section of the Okhla Weir over the Jumna River situated eight miles below the historic city of Delhi. It is remarkable as being the first rock-fill weir not provided with any lines of curtain walls projecting below the base line, which adjunct had hitherto invariably been adopted. The stability of its sand foundation is consequently entirely dependent on its weight and effective base length. As will be seen, the section is provided with three body walls in addition to the breast wall. The slope of the fore apron is 1 in 20. It is believed that a slope of 1 in 15 would be equally effective, a horizontal talus making up the continuation, as has been done in the Madaya Weir (Fig 22, post).

The head, when the shutters are up and the weir body empty of water, a condition that could hardly exist, is 13 feet. This would require an effective base length, or l, of 195 feet, the actual is 250 feet, but, as noticed previously, the end parts of the slopes cannot be included as effective, consequently the hydraulic gradient will not be far from 1 in 15. The weight of the stone, or t_p, exactly balances this head at the beginning of the fore apron, as it is $10 \times 1.3 = 13$ feet. If the water were at crest level and the weir full of water, t_p would be 8 feet, or, rather, a trifle less, owing to the lower level of the crest of first body wall. This head of 13 feet is broken up into four steps, the first, 3 feet deep, acting on a part of the rear apron together with 30 feet of the fore apron, say, 1 in 15, the rest are 1 in 20. A slope of 1 in 15 from the first party wall would cut the base at a point 40 feet short of the toe. Theoretically a fourth party wall is required at this point, but practically the riprap below the third dwarf wall is so stanched
with sand as not to afford a free egress for the percolation, consequently the hydraulic slope may be assumed to continue on to its intersection with the base. As already noted, material would be saved in the section by adopting a reliably stanch rear apron and reducing the fore slope to 1 in 15, with a horizontal continuation.

This type (C) is only economical where stone is abundant, it requires little skilled labour, or masonry work. On the other hand the mass of the material used is very great, much greater, in fact, than is shown by the section. This is owing to the constant sinking and renewal of the talus, which goes on for many years after the first construction of the weir.

The action of the flood on the talus is undoubtedly accentuated by the contraction of the waterway due to the high sloping apron. The flood velocity 20 feet below the crest of Okha Weir has been gauged as high as 18 feet per second.

(46) Another typical example of this class is the Dehri Weir over the Son River (Fig. 17). The value of l, if the apices of the two triangles of stone filling are deducted and the curtain walls included, comes to about $12H$, 12 being the coefficient adopted for this class of sand.

The curtain walls, each 12,500 feet long, must have been enormously costly. From the experience of Okha, a contemporary work, on a much worse class of sand curtain protection is quite unnecessary if sufficient horizontal base width is provided. The head on this weir is 10 feet and the height of breast wall 8 feet, tp being therefore, $13 \times 8 = 104$, which is sufficient, considering that the full head will not act here. The lines of curtains could be safely dispensed with if the following alterations were made: (1) Rear apron to be reliably stanchied in order to throw back the incidence of pressure and increase the effective base length, (2) three more body walls to be introduced, slope 1 in 12.
CHAPTER VI—WEIRS ON SAND FOUNDATIONS

retained but base to be dredged out towards apex to admit of no thickness under 3 feet. This probably would not increase quantities except in masonry above what they are now and would entirely obviate nearly 5 miles of undersunk block curtain walls.

(47) Figs 18 and 18a are of the weir at Jobra over the Mahanadi River also in Bengal. The site-plan is Fig 18b. The head measured up from normal bed level viz R L 54 50 is 13 feet identically the same as in Okhla Weir. The total base width is however 173 feet to 290 feet of the latter. This great difference is due to the nature of the sand in the river. The flood discharge per foot run is

\[
\frac{900,000}{6,400} = 1.40 \text{ second feet}
\]

The weir has two lines of curtain walls which add 34 feet to whatever is the effective base width. With \(e = 12 \) the correct value of \(l \) will be \(12 \times 13 = 156 \) the actual is \(173 + 34 = 207 \) feet. The base length is therefore sufficient.

(48) Another example of a rock fill crib weir designed by the author for some intermittent torrents with deep sandy beds in upper Burma is given in Fig 19. This type was necessitated by the exigencies of the situation neither skilled labour nor lime for mortar being available and the time of construction was limited to a few months. The object of the framing of posts and laggings is to act as a support for the covering boards. These are essential to prevent the stone filling which was not packed on the surface from being washed out.

The foreslope is 1 in 15 formed by steps of 1 foot at 15 foot intervals. An improvement would have been to have carried the longitudinal vertical
planking at each step, right down to the sand foundation instead of stopping short, as was done. They would then act the same way as the body walls shown in Figs 15, 16, etc., and be of great value in affording stability to the sand foundation. Even without them these weirs answered well, the settlement not being great. This was due to the rapid silting up of the river bed, the first freshet having piled sand up to crest level, thus rendering the weir watertight. One of these weirs, whose foreslope was altered to 1 in 10, settled considerably and required renewal of the sunk stone-filling, which proved that the hydraulic gradient was too steep. The body had to be lengthened in consequence. A photograph of one of these weirs is given in Chap VIII, Fig 27.

(49) In Fig 20 is an improved alternative section on the same lines, in which clay is used as a stratum below the stone-filling. The base is therefore rendered impervious, and the correct value of k can be estimated with accuracy, and any subsequent settlement is rendered impossible. It will probably also cost less. The scantlings used are of the lightest possible
dimensions, the laggings being 6 inches by 3 inches, the post 8 inches diameter round hard wood, and the planks were only 1 inch thick, these were spaced 6 inches apart and were screwed down with coach screws. Heavy scantlings of light wood are unsuitable for crib work as they become buoyant...
when immersed, thus reducing the weight of the weir body, so as often to require anchoring down, to prevent the whole being floated off.

(50) Fig 21 is a section of Damietta and Rosetta subsidiary weirs across the Nile River below the Grand Barrage. Fig 21a is a site plan.

The profile of this work is of type C, but the method of construction renders this work a most valuable object-lesson. The work was carried out without any pumping, all material having been deposited in the water of the Nile River. First the profile of the base was dredged out, as shown in the section. Then the core wall was constructed by first depositing loose stone in a temporary box or enclosure secured by a few piles from barges floated alongside. The whole was then grouted with cement grout poured through pipes-let into the mass. On the completion of one section all the appurtenances were moved forward and another section built, and so on until the whole wall was completed. Clay was deposited at the base of the core wall and the profile then made up by loose stone-filling.
This system of subaqueous construction proved eminently satisfactory. Details of the construction of these two weirs are to be found in Sir Hanbury Brown’s “Irrigation” (Constable), a most valuable addition to irrigation literature. Notwithstanding these excellent innovations in methods of rapid construction, the profile of the weir itself is open to the objection of being extravagantly bulky even for the type adopted, the base having been dredged out so deep as to greatly increase the mean depth of the stone filling.

It is open to question whether a row, or two rows of concrete sheet piles would not have been just as efficacious as the deep breast wall, and would certainly have been much less costly. The pure cement grouting was naturally very expensive, but the admixture of sand proved unsatisfactory, as the two materials of different specific gravity formed layers, and so pure cement had perforce to be used. It may be noted that the value of \(L \) here is much less than indicated by formula (4). At Narora Weir \(L \) is \(112 \), or 165 feet long, here with a value of \(c \) of 18, \(L \) is but 150 feet = \(8 \frac{1}{4} c \) The values of \(H^2 \) are the same in both weirs.

It is a great advantage when time is short to have the mass of a large work like this constructed by unskilled labour which can be crowded into the work, collection of stone having been made a year previous. The provision of mortar and the building of concrete or masonry by skilled labour also involves a great deal of arrangement and supervision which is avoided when loose rock construction is adopted. A site plan is given in Fig 21a.

(51) The section of the recently constructed Madaya Weir in Burma is shown in Fig 22. On account of the exceptional heavy unit flood discharge, the conditions are quite abnormal so that although the material of the bed of the river is a shingle and coarse sand with value of \(c \) of about 10, yet the width of the talus exceeds even that of Okhla.

In the Madaya Weir the rear apron has been properly designed of impervious clay puddle, well protected on the surface and at its junction with the crest wall. This weir is only 200 feet long.

(52) As an instructive example of what can be accomplished with simple clay filling in the body of a weir, with a mere covering of bricks laid on edge, the Sidnai Weir section (Fig 23) is here with given
The weir is founded partly on deep sand and partly on clay. The profile, where on clay, is similar to the figure but with the base cut off at the top of the piles. Clay is heavier than stone filling, having a specific gravity of 1.8 to 2 against 1.3 of the stone (with 50 per cent voids), consequently if its protection can be ensured it is a valuable material, having further the advantage of being impervious. It is considered that its use should not be confined to the rear apron of weirs but be also employed below rock filling, or concrete blocks or rubble masonry in the fore apron. There is no reason why this should not be done.

(53) In Fig. 24 is an example of a 20 feet high overfall weir of type A on boulders and gravel. It is of the Granite Reef diversion weir, Salt River project, of which the Roosevelt Dam is the main feature. The profile,
which has stood the test of actual trial, is extremely valuable as an object lesson wherefrom a reliable value for the coefficient c for river beds formed of boulders and gravel can be deduced. The estimated length of creep or t
amounts to 84 feet which when divided by the head of 20 feet the quotient c is 4.2. The peculiarity of the section consists in the floor being almost entirely relieved of hydrostatic pressure by spaces having been purposely left between the 10 feet square concrete blocks which form the surfacing of the floor. This arrangement, by shortening the base length, effects considerable reduction in the pressure area of the drop wall. Such a device, however, would not be practicable when pure sand forms the foundation, as it would inevitably be blown up through the interstices and washed away, causing the floor to collapse. The fore curtain is also pierced by vents with the evident object of reducing the hydrostatic pressure below the weir by allowing the percolating water a free passage. This idea is purely chimerical; the only possible effect of the vents will be to nullify the utility of the fore curtain as providing an additional length of creep. In the diagram the outlet not being quite free a reduced pressure of 1 3/4 feet is allowed to exist at the commencement of the floor tapering to nil at its extremity.

(54) In Fig 25 while retaining the general characteristics of the original profile, the following modifications are suggested —

An impervious rear apron and the floor widened considerably. The head of water acting on the back of the weir wall is reduced from 20 to 16 feet; the section can therefore be reduced. The hydraulic gradient provided is 1 in 6, the previous one of 1 in 4 not being deemed flat enough. The floor covering slabs have been increased in thickness from 1 3/4 to 2 3/4 feet, the previous thickness not providing sufficient weight as they are practically submerged and lose weight from displacement. As thus altered the work will not cost more and be very much more stable. The weir is 1,000 feet long. The section over rock is given in Fig 31 par (53), Chap II.

(55) A section of the Grand Ancut * at Dauleshwiram over the Godavari River is given in Fig 26. This work is remarkable as differing from the ordinary ancut type in many respects. It was constructed some time in the forties of the

* For map see Editor's Notes at end of Chap XI — Ed
Fig 27 — Sangam Anicut Pennar River Length 4,076 feet Discharge 600,000 cubic feet

Figs 28 29a — Beswada Anicut Krishna River Length 4,000 feet Discharge, 736,000 second feet.
nineteenth century, and it was deemed desirable, in the case of an overfall, to resolve the current in a horizontal direction.

This weir consists of two breast walls founded on rows of circular 9 inch thick wells, sunk 6 feet in the sand and filled with rubble stone. These breast walls are 36 feet apart and are connected by a wide horizontal crest and curved apron, bringing the level down to 8 feet below crest and to 2 feet above that of the normal river bed. Beyond this masonry apron is packed pitching, 30 feet in length where a shallow masonry wall finishes the made apron. The talus of more or less hazard stone pitching extends for another 150 feet. The apron and horizontal crest are founded on sand filling, a system at once economical, and with this description of coarse sand quite safe. This making up by sand filling is quite a common practice in Madras works which might well be followed with advantage in many cases where rubble filling has been resorted to.

The width of the weir is 217 feet, which is exceptionally great, being only exceeded by the 250 feet of the Okhla Weir, which work, however, is founded on sand of a very inferior description to that in the Godavari River, and by the Madaya Weir 235 feet. The crest of this weir is 11 feet above normal bed level.

(56) The Sangam Anicut (Fig 27) is a work on the same river as the Adimapah but lower down the stream. The whole discharge is greater, but the unit discharge is less being 147 to 184 of the latter (vide Table I, par (27)). Its fore apron, which is impervious, is 60 feet long.

(57) The Beswada Anicut, Figs 28, 28a, and 28b, at the head of the Kistna River canal system which was constructed 1854-55, is a notable work. The river at the site of the work had actually a flood velocity of 10 feet per second. The weir obstructs half the flood water section.

In the list given in Table I, par (27), the unit discharge exceeds that of any other work, excepting the Madaya and the Pennér at Vellore.

A row of circular wells of the usual Madras type forms the foundation of the breast wall. Where the bed was deep in the cold weather channel it was first filled up with sand above LWL, and the wells were then built on this bank and undersunk in the dry, the current having been diverted elsewhere.
The remaining part of the low channel was then filled up with stone. This is explained in Figs 28 and 28a.

In the case of the Mahanadi River Weir, at Jobra, a different procedure was adopted, as is shown in Fig 18a. Where the deep bed existed it was filled up to above L.W.L with stone, the line of blocks being entirely omitted at a part where, apparently, they are most wanted. The breast wall was then built on the rubble mass.

(58) The late General Rundall deserves the gratitude of posterity for having had the foresight to conceive, and the boldness to execute a large loose rock weir without any foundations below the bed of the river. At the time Okhla Weir was under construction, most engineers, as the author well recollects, prophesied its utter failure.

(59) The Laguna Weir (Fig 29) has the distinction of being the only weir of type C in America. It is consequently termed the "Indian" weir.

The Colorado River has all the attributes of one of the deltaic rivers of India, the main difference lying in its low flood level and comparatively small discharge, which dwindles down to a very small amount in the dry season.

From the description of the sand, the coefficient will be at least 15. The weir is 4,500 feet long, as measured on the plan, and the depth of afflux is 5 feet. The crest of this weir is placed at high flood level, consequently it blocks the whole of the water section, a procedure which is quite unique.

The unit discharge is from 35 to 40 second-feet only, the overfall being

* Practical analysis of samples seems desirable — Ed
free. No crest shutters are used, and the rear apron is not stanched with a clay layer. The object of crest shutters is to reduce the obstruction to floods, and consequently the scouring action of the overfall.

(60) The breast and body walls are carried right down to the deep bed level, and the former has sheet piling below that again. The body walls are not considered to be sufficiently near to each other to be properly effective. These suggested improvements are embodied in the alternative profile shown in Fig. 30. The wooden sheeting is retained below the breast wall, but solely with the object of blocking the deep channel, which during construction should be diverted through the sluice channel.

If this is done there is no reason whatever why the deep channel should not be filled up with nothing but sand, the latter being kept in place by a heap of rubble deposited above and below it.

Sand filling is commonly practised in Madras weirs and is effective, provided there is no current which will work it away, or its removal by scour is otherwise prevented.

The plan of these head works is given in Fig. 1, Chap. VII, par. (28).

(61) Fig. 31 is a section of the Srivakantham Anicut over the Tampraparni River. As their unpronounceable names suggest, these works are situated in the Madras Presidency. Although the section seems insignificant, its length is a quarter of a mile, and the flood water of the river is 15 feet deep, the unit discharge is but 90 second-feet.

This work is practically founded on hard clay. The sand being quite shallow, the curtains fore and aft of the floor penetrate into the clay substratum. The work is, therefore, free from hydrostatic pressure. If it were not for this the length of the floor would be quite inadequate.

(62) Fig. 32 is the Pelandorai Anicut, likewise a Madras work. The head is 9 feet, consequently a base length or a value of 108 feet is required.

* But if this rubble up stream were scoured away as occurred at Narora and at Khanka and not replaced the work would come to grief in the same way as happened at these places. See Editor's Notes at end of this Chapter — Ed.
(the coefficient being $\frac{12}{2}$) The actual value is about half this, proving that the work, like the previous one, is founded on clay.

![Diagram of Pelandoral Anicut](image)

Fig. 3.—Pelandoral Anicut Length 860 feet Discharge 850,000 second feet

For falls on clay or rock the length of floor or apron should $= 3H$, or, if there are shutters, $3H^a$. The riprap or pitching beyond should, it is considered, extend at least as far again.

(63) We have hitherto dealt with the section of the weir itself, but canal head works comprise, in addition to the weir itself, the following distinct items which may be enumerated as

- **First** The weir across the river
- **Second** The weir-scouring sluices or under-sluices
- **Third** The canal head or intake

With regard to the position of the weir relative to the river, the first point to be determined, in deciding on the position of a canal take-off from a river, is the most suitable site for the purpose.

The following remarks excerpted from Mr. Buckley's valuable work *The Irrigation Works of India* will explain the points to which attention must be directed in forming an opinion on this matter:

The selection of the site of the head works is often a matter of considerable difficulty. One of the most essential points to be first considered is the nature of the silt carried by the river whether it is fertilizing or the reverse; what proportion of it is desirable to carry down the canal and whether the soil in which the canal is to be cut can stand the velocity which can carry the silt. When the slope of the canal is determined, an idea can be formed from the levels of the country at what point the water can be delivered on the surface of the ground and the area under command of different sites for the head works can be ascertained. The approximate length and depth of cutting of the unprofitable portion of the canal which lies between the head works and the first point of irrigation can also be roughly worked out, and it is necessary to do this as the cost of this portion may often be very great. The height of the weir above the bed of the river should next be determined. This will depend on the depth of water required in the canal and the level of the canal bed with reference to it. Then the effect produced by weirs of various heights on the flood level of the river
should be worked out, the maximum flood discharge must be ascertained from gauge readings, from cross sections of the channel and known surface slopes, and from these data the afflux, or height by which the flood level will be increased by the obstruction caused by the weir, can be calculated. This point is of great importance, as upon it depends the necessity for constructing embankments to control the river above the weir, so as to prevent inundation and the possibility of the river outflanking the weir. The most suitable position as a rule for a weir and head works of a canal is on a portion of the river where the channel is straight, the velocity uniform, and the sectional area of the stream fairly constant. A narrow gorge of a river appears to have the advantage of cheapness, but it may prove the most expensive owing to the greater velocity and depth of the current necessitating a heavier section than usual. A particularly wide reach of a river has, on the other hand, the disadvantage that the average velocity being decreased the deposit of silt and sand is encouraged, and the bed of the river above the weir is likely to become so raised that difficulty will be experienced in keeping a channel open to the take-off of the canal. Another point of importance is to select a site as near as possible to a stone quarry, so as to diminish the lead of building materials.

(64) Where the river is of abnormal width, consisting of wide and banks overflowed in flood time only, the channel can be narrowed with advantage, care being taken not to reduce the length of the weir below that of the average width of the river at sites where high friable banks occur.

This reduction in width will generally take place on one side only, viz., on the opposite bank to where the canal off-take is situated. This is effected by the construction of a T head composed of earth or even sand of considerable dimensions and pitched with stone, an example of this is given in the plan of the head works of the Sidnai Canal, in which the T head is shown (see Fig. 23). Up stream, training banks or spurs will also be necessary as a support, as inspection of Figs. 8b and 9b will show.

(65) A difficulty experienced with weirs over very wide, sandy river beds is the formation of islands of sand in the bed above the weir. These islands get soon overgrown with weeds, and if not removed form a serious menace to the safety of the weir by causing cross currents which, if they run parallel to the work, may undermine it. The best preventive of this danger is the adoption of collapsible iron shutters fixed on the crest of the weir. The supports consist of iron rods hinged to the crest of the weir. The leakage through them is insignificant. The weir then need not be built as high as would have been necessary prior to the introduction of shutters, and so does not offer near so much obstruction to the water section of the river when in flood.

In the older works, such as the Okhla, Narora, and Dehri Weirs, the depth of the crest shutters did not exceed 3 feet. In more recent works, and also since fitted to older weirs, much deeper shutters are used. In the Rupar and Chenab weirs 6 feet deep shutters are used, as also on the Betwa and Dhikwa weirs.

* But see Editor's Note on Weir Shutters (PP) at end of this Chapter — Ep
Editor’s Notes

(M) The Lessons of the Narora Weir — The author performed a useful service by systemising in graphic formula a theory of design based on certain principles which had for some time previously received considerable recognition in North India. The very neatness of his process however shows the difficulty of accounting for the accident to the Narora Weir in March 1898 by the hypothesis of hydrostatic uplift or blow up. It may be well therefore to lay before the reader evidence officially recorded which has not hitherto been adequately published.

In the winter of 1875–76 the foundations of the Narora Weir were laid and built up to about floor level and the summer floods of 1876 were allowed to pass over the same. The foundation of the crest wall consisted of a line of masonry walls sunk to R L 56½ or 10 feet below floor level. After the flood season it was found that where this line crossed the deep channel of the river (point marked X in Fig 33) the masonry had subsided owing to underscour (see Fig 34). At this point the bed of the deep stream was normally at about R L 565 but the scour of 1876 went down to R L 559 or deeper. The work should have been made especially strong at a weak point like this by sinking the foundations deeper or by throwing abundance of loose stone reinforced by sheet piling into the deep channel up stream but nothing of the sort was done. The only safeguard adopted was the laying of an apron of puddled clay covered by a 3 foot depth of loose blocks of kankar* along the whole length of the weir up stream of it. Nothing special was done to strengthen the deep stream section and thus neglect appears to have been mainly the cause of the accident twenty years later. The clay and kankar apron was effective so long as it was kept in good repair and maintenance but even this duty was neglected. Construction was completed in 1878 and in the Completion Report of 1897 the work was

* I a kar A soft hydraulic limestone
depicted as in Fig. 35 (but, of course, without the stand-pipes, \(a', a'' \)). The dwarf-wall, shown in dotted lines, forming a cistern or water-cushion below the drop, was not built. Fig. 33a shows that the river, in 1878, approached the weir obliquely from the left, a fact which implied diagonal scour towards the Weir Sluices and Canal Head at the right flank.

In 1895, the engineer in charge of the weir set his heart on sluicing away the large sand bank, or island, above the right-centre of the work (see Figs. 33, 33a), by manipulating the shutters on the crest of the weir during the flood season. He succeeded only too well, and built groynes \(C, F \) (Figs. 36, 36a) projecting from the weir 600 feet up stream, by way of protecting it from parallel scour. In 1895 a scour 35 feet deep was sounded within 40 feet of weir crest in the flood season (Fig. 37), and, in 1897, similar scour was observed about 150 feet from crest. Throughout the floods of 1895/96-97, the local engineer kept shutters erect on a length of about 800 feet on the left flank, with a view to scouring away the island on right-centre, but in place of that island a new one formed on the left flank, in front of the obstruction. A current was set up on the left flank which scoured the tail of the whole weir from left to right, and to check this the engineer proposed, in 1897, to build out another groyne \(D \) down stream of \(C \) (Fig. 36). He described it as 'a rush of water parallel with weir, causing it to scour deeper year by year. The bed of the channel is now 4 feet below the kankar talus.' Colonel Corbett, the Chief Engineer, Irrigation Works United Provinces, expressed
some alarm at these activities of the engineers at Narora, but left his remarks 'subject to criticism by the local officers, who watch the floods and are best in a position to judge'. It is curious that neither he nor the local engineers, seem to have realised that the diversion of river currents, by manipu-
lation of the weir shutters, might sweep away the clay and kankar apron of the weir, at the same time that it scoured away the sandbanks that rested thereon! During the low-water season, from November to March, nothing was done towards repairing or strengthening this apron, or towards ascertaining whether any repairs were necessary. When the weir collapsed on March 29th, 1898, it was found that the whole of the apron in this locality had been swept away, leaving hardly a vestige of the clay-puddle underlying the kankar, and then the engineers puzzled over speculations about "blow-up" and "piping," instead of assigning a more prosaic and simple explanation to the accident.

In 1896, in consequence of repeated subsidence of the Khanki weir on the river Chenab, Colonel Clubborn experimented at Roorkee on the pressures and velocities of water percolating through pipes filled with sand, and his experiments were widely discussed in India in 1897. Apropos of this discussion, Mr. J. S. Beresford, officiating Inspector-General of Irrigation in India, in March, 1898, caused two vertical holes to be bored through the floor of the Narora Weir at the point marked W in Figs. 33-36, and stand-pipes fixed in them, as shown in Fig. 35, by way of ascertaining the hydrostatic pressures under the floor. This work was completed on March 26th, 1898, when the pipe a' showed a pressure-level of 578.03, or 6 feet above floor surface, and 11 feet above floor bottom. The floor consisted of a 4-foot thickness of concrete and brickwork, weighing 112 lbs per cubic foot when dry, or, say, 135 lbs (112 × 1.2) per cubic foot when saturated with water, and 1 foot thickness of Delhi ashlar, weighing 160 lbs per cubic foot, dry. Total weight of floor per square foot = (135 × 4) + 160 = 700 lbs. The force of hydrostatic uplift at pipe a' would be 11 × 62.4 = 686 lbs per square foot of floor, so that the floor was sufficiently heavy to be stable through gravity alone. Besides which there was its strength of resistance to shear, or to bending transversely. There was nothing in these data to account for the accident to the weir at the point X which occurred three days later when the crest-wall of the weir subsided through a length of nearly 400 feet, and the surface ashlar of the floor had been forced up to a maximum height of 2½ feet, tearing up with it one course of the brickwork beneath it (Fig. 37a). This sketch was drawn by the Superintendent Engineer, who was on the spot at the time of the accident, and the arrows indicate his conception of how the damage was caused. He wrote: I noticed a strong spring playing like a fountain close to the wall, throwing up sand and water, and very strong springs, like...
geyser's bubbling up through the grouted pitching (down stream of the deep wells). Floor had been uplifted to a maximum height of 2 23 feet and was standing arch like. The only row of stones not uplifted (in fact it had sunk with the weir wall) was that at the toe of the wall and was thus held down by it. Down stream of the floor a large hole about 8 feet deep had been scoured in the bottom of which was lying the debris of the grouted pitching and to left of this the grouted pitching near floor was tilted up on edge.

A horizontal crack was visible right through the wall at a distance of 6 feet below crest and ¼ inch wide. There was no vertical crack anywhere. The main cause of the disaster was undoubtedly the absence of a good puddle and kankar apron up stream of weir and insufficient length of original apron. I think it most likely that the pressure of the water was divided into two portions— one which went under floor and came out between the deep walls and blew up and scoured out the talus—the other coming up along the smooth joint of the upstream block and then running horizontally between stone and brickwork lifted it up in part along with the stone.

It seems to me that the stone floor and one layer of brickwork were uplifted by the force of the water acting in a reflex direction backward before the talus (grouted pitching) was lifted.

The following difficulties lie in the way of acceptance of these surmises: (a) If piping had occurred as sketched by his arrows the down stream line of wells should have subsided but they didn't. (b) The grouted pitching shown as concrete 1 foot thick resting on stone rip rap in the plan of 1892 (Fig 35) can hardly have been heavy enough to offer greater resistance to hydraulic uplift than the ashlar and brick masonry of the floor.

Colonel Corbett wrote in May 1898: The floor, as described by the Superintending Engineer, Excavation down to R.L. 573 at injured portion of the weir has revealed no trace of the layer of clay puddle and kankar rip rap 30 feet wide up stream of the weir. To the want of an efficient apron up stream the failure of the weir must in my opinion be chiefly attributed. It is impossible to be certain of what occurred but the following seems most likely. The scouring out of the upstream clay apron, and the retrogression of levels amounting to from 2 to 3 feet down stream of the weir led to an increased upward hydraulic pressure on the floor and grouted pitching. This latter was lifted bodily and a portion blown out through the hole thus formed a considerable volume of water found its way carrying sand. A cavity thus formed under floor and crest wall the latter subsided and carried with it the adjoining portion of the floor. Owing to the subsidence a horizontal crack formed in the floor between the stone and brickwork. Water under a head of 12 or 14 feet found its way through the
crack, chiefly along the vertical joint between the concrete and the up stream line of walls, and lifted the stones bodily. The stone floor was thus blown up carrying with it, in some places, the upper layer of brickwork. There is a slight vertical crack through the concrete, parallel to, and about 25 feet from, the crest, otherwise this portion of the work has not been injured."

The difficulties in the way of Colonel Corbett's explanation are (a) If piping had occurred under the deep wells, they would have subsided, (b) if there was retrogression of levels down stream, i.e., settlement of bed and water levels, that would imply a decrease, not an increase, of hydraulic uplift against floor and pitching, (c) in any case, "piping" is the antithesis of "blow-up", piping would have released uplift pressure, both could not occur together, (d) As regards "blow-up," if this had occurred, the whole floor, 2 feet thick, would have gone up, not the ashlars course and upper brickwork only, (e) as regards "blow-up," if it occurred it would have been most violent at the up stream end of the floor where the water-pressure level was highest, whereas the ashlars was lifted highest at the down stream end of the floor where the buoyant force was weakest.

Mr N F Mackenzie was one of the engineers employed on the repairs to the Narora Weir and his opinion of the affair is quoted, in Wegmann's well known treatise as follows —

The author's opinion is that the floor was first undermined by 'piping,' the concrete or perhaps concrete and masonry, settled away from the ashlars leaving a horizontal joint into which the water found its way, and this probably occurred when the up stream and down stream water was at about the same level. To resist a head of 11 feet of water, when ponded up, there was only 1 foot of ashlars left, and it accordingly blew up. The talus stones were also undermined and shaken, and were then ripped up by rush of water through the rent in the floor, and were not blown up by hydrostatic pressure. When the floor first settled it would probably crack at the toe of the crest-wall thus accounting for the strong spring at that point. The sand blowing in the talus is also accounted for by piping, as the removal of most of the foundation sand under the floor means that there was little friction to reduce the velocity due to the head. The theory of piping and settlement is quite as consistent with the facts as the blow up theory, and for this reason the local engineers are by no means positive as to the cause of the accident.

At the Simla Engineering Conference of 1913, Mr C H Hutton, Chief Engineer Irrigation Works, United Provinces, read a paper on this subject. He mentioned that since the accident of 1898, pressure pipes had been inserted for observation in the Narora Weir, not only at site W, but also at Y and Z (Figs 33, 36a), and not only in the floor, but also in the up stream apron, and down stream of the lower curtain. Curiously enough, however, no similar action was taken at or near A, the site of the damage of 1876 and of 1898, and of the crossing of the former deep channel of the river. Mr Hutton exhibited the results of the observations of pressure levels and inferred that they agreed generally with the "hydraulic gradient" theory, as adopted in Black's construction, except that the path of percolation seemed to follow the "line of least resistance," instead of the "line of creep." In other words, according to him, in the case of a horizontal floor, held in by two lines of sheet piling, the percolation, instead of creeping down one side and up the other of the up stream piling, then along the floor, and
then down and up along the down stream piling, would pass direct from the toe of the up stream piling to that of the down stream piling.

He noticed, however, that the pressure pipes at W, on March 26th, 1898, when there was (apparently) no up stream apron existing, showed pressures 2.7 feet higher than those indicated by the line of hydraulic gradient, as drawn, either by Bligh’s process, or otherwise. It is possible that at W on that date the up stream apron, 30 feet long, may have existed, but neither Hutton nor any other commentator with knowledge of the conditions at Narora has even hinted at such a possibility. There was nothing in the evidence of pressure data produced by Hutton that could support the theory that the damage to the weir in 1898 was caused by hydrostatic uplift.

In Fig. 38 the section of the Narora Weir is drawn to an exaggerated vertical scale to show the hydrostatic levels in the pressure pipes passing through the floor on three dates viz., on 26th March 1898, three days before the accident, and on the 11th and 23rd October, 1899, after the damage had been repaired. On the first and last dates the water surface level of the river, down stream of the weir, was at about 572, but on the 11th October it was nearly 3 feet higher. On the first two dates the river’s water surface up stream of the weir was approximately the same viz., 584.2 or 584, but the 3-foot rise of water level, down stream, on the 11th October had the effect of raising the water levels in the pressure pipes by about half that height, viz., 1.5 feet. It is noteworthy that the difference of water-level in the two pressure pipes (which were 20 feet apart) on all three dates averaged about 0.7 foot, indicating a hydraulic gradient through the subsoil of about 1 in 29.

To sum up the case, we invite the reader to bear in mind that the damage to the weir in 1876, and in 1898, occurred at the same place viz., where the weir crossed the quondam deep channel of the river. Well foundations are supposed to rely largely for stability on frictional resistance of soil, but the
wells of the crest-wall were not "sunk" in the soil, they were merely built up "in the air," resting on the bottom of the deep channel, at R L 565. The floor, with bottom at R L 567, must have been laid on artificial sandfilling, which was liable to subside, in any case. The river bed, in 1876, was scoured down to at least R L 559, and probably much lower, and sand from under the floor and wall must have slipped into the scour, leaving cavities behind for which no remedy was adopted, beyond the laying of an apron of clay and kankar, 30 feet wide, up stream.

In 1895 the local engineer began manipulating the weir-shutters as a means of scouring away the up-stream islands, and incidentally scoured away the up-stream apron. Hutton has recorded that a scour 35 feet deep was measured within 40 feet of the weir crest. Experience in pumping out foundations in sandy soil have shown that, below spring level, saturated sand will flow towards the sumph along gradients as flat as 1 in 3, or even flatter, and a glance at Fig. 37 will probably satisfy the reader that sand from under the floor, at R L 567, would readily flow into the scour bottom at R L 535 or thereabouts. On the subsidence of the floods the scoured hole would partially fill up by deposits from the falling flood, but cavities would probably remain under floor and drop-wall. Hutton mentioned that, after the accident of March, 1898, a "hole 8 feet deep" (R L 559?) was found near the toe of the foundation of the crest wall (see vertical arrowhead in Fig. 37). It is possible that this cavity may have existed ever since the accident of 1876 for both Corbett and Hutton have recorded that probeings made throughout the weir floor in 1898 showed no cavities except in the vicinity of the subsidence, i.e., at the site of the crossing of the quondam deep channel of the river. Early in 1897 the central divide groyne at C was built, and during the flood season of that year the local engineer reported that it was brought into severe action during the process of erosion of the remains of the old island. A strong current, parallel with weir and about 150 feet from it set up after the erosion of the island and scoured holes 30 feet deep. After the flood season, during the winter of 1897-98, nothing was done to repair the upper-stream apron, or even to ascertain whether it still existed. The weir wall and floor were very probably lying, as beams across cavities if we may judge from the horizontal crack in the former, 6 feet above floor level, after the accident, and from the horizontal shear of the ashlar course—the compression flange of the floor slab. The wall and floor were supported by hydrostatic buoyancy until the end of March, 1898, when the water levels had sunk too low for adequate support. The work failed not from hydrostatic uplift, but from the very opposite cause, the withdrawal of hydrostatic support.

So, also, the grouted pitching below the down-stream curtain, failed from subsidence, not from 'blow-up', for the local engineer had reported a considerable rush of water along the tail of the weir, which had scoured the bed to a depth of 4 feet below the kankar talus (say, R L 562). After the accident of 1898 the authorities acted in panic, and laid a new apron of clay and kankar, extending 80 feet up-stream of the weir, with sheet piling to box it in throughout the length of the work. It would have sufficed merely to repair, or replace, the old 30 foot apron, and to concentrate on strengthening the 400 foot length of weir at the deep channel crossing, for nowhere else had the work shown any weakness.

Clay puddle was unnecessary, its adoption being based on ideas of
percolation piping and uplift. The Okhla Weir across the River Jumna had shown that loose stone thrown into the river bed proved adequately staunch with....

In short, the original design and shutters and

The author's graphic delineation of hydraulic gradients is based on the assumption that the extension of the clay and kankar apron to a distance of 80 feet upstream of the weir with a curtain of sheet piling was precisely what the case required. But the weir never exhibited any weakness so long as a 30 foot apron without sheet piling existed so that the foundation of the formula making $c = 15$ in par (9) seems questionable. If c depends on the coarseness or fineness of the sand in any particular locality, it is obviously desirable that samples of sand taken from the Ganges at Varanasi from the Chenab at Khanki from the deltas of the Madras rivers and from the Nile in Egypt should be analysed and compared in some uniform system.

(N) The Khanki Weir Par (35) — The weir across the River Chenab at Khanki as originally constructed consisted of a brick masonry wall 8 feet thick and 8 feet deep and about 4,000 feet long built across the river with a masonry pavement 4 feet deep sloping downwards at 1 in 15 in the downstream direction from it to a distance of 58 feet. Further downstream the slope of 1 in 15 was continued for a distance of 44 feet down to elevation 715 by a layer of stone riprap 4 feet deep held in at sill by two lines of boulder-filled crates and beyond that was a talus of concrete blocks succeeded by loose stone. Upstream of the masonry crest wall 8 feet x 8 feet there was an apron of loose stone sloping down at 1 in 3 upstreamwards.

On the left flank of the weir and in line with it were its sluices having twelve vents each 20 feet wide with floor at elevation 715. And adjoining the sluices and upstream of it on the left bank of the river was the Head Regulator of the Chenab Canal. The weir was divided into eight bays each about 500 feet wide by masonry piers carrying a wire ropeway for transit of passengers across the river. Bay No. 1 of the weir on its left flank was built across what had been one of the main channels of the river known as the Palkhu channel and Bays Nos. 5 and 6 similarly crossed what had formerly been the main western channel. The weir should have been built of special strength where it crossed these channels, but just as in the case of the Narora Weir this was not done and just as in that case failures of the structure occurred at these sites. The top of the main wall of the weir was laid at elevation 722.8' level which was actually about 2 feet lower than the mean bed level of the waterway of the river even after it had been contracted in width to about 4,250 feet by the weir and its sluices. The work was begun in 1890 and completed early in 1891, but even during its construction the main wall in Bay No. 1 cracked and subsided when it had been built up 4 feet only. This damage was not duly reported but it was discovered during the repairs to the damage of January 1893.

On the crest of the weir were fixed iron shutters 3 feet wide and 6 feet high hinged to the crest which could be erected to raise the water surface of the river in order to feed the canal or laid flat to pass floods without obstruction.

In July 1893 occurred the second highest flood that has ever been
recorded at this place. The flood formed "standing waves" on the down stream pavement of the weir, and tested it severely. The up stream apron was scoured away, the crest wall was underscoured, and about 55 feet of its length in Bay No. 5 collapsed. It is undisputed that this failure was due to erosion by the river currents solely.

In January, 1895, the crest-wall in Bay No. 1, over a length of 250 feet subsided, the sinkage amounting to 6.7 feet where deepest. The engineer in charge reported on January 6th: "The river was held up on evening of 5th up to 726 and thirty-four shutters of Bay No. 1 were dropped with a view to washing off a high silt deposit from the hole in the weir talus which had to be filled with rubble. During the night the weir crest subsided, and with it the up stream reverse slope, but the down stream slope suffered in less degree."

The executive engineer surmised that the subsidence was due to "piping" under the structure, but the Chief Engineer (Sir Thomas Higham) did not accept this view, on the ground that "piping" needed an outlet, which was not visible in this case and also on the ground that in case of piping the damage down stream would have been greater than that up stream. The Chief Engineer recognised that the weir had been underscoured by the surface floods of the river and also that the damage might have been due to the rush of water through the gap where thirty-four shutters had been dropped, but he came to no final conclusion on the subject.

Whilst this damage was being repaired, a flood, occurring on February 2nd swept away the protective embankments, and damaged the works again.

In the course of repairing the damage the loose stone apron, sloped at 1 in 3 up stream of the weir, was replaced by another 4 feet thick, extending 72 feet up stream and protected by sheet piling 17 feet deep, down to elevation 701.

On October 26th, 1895, the crest wall in Bay No. 1 again subsided over a length of 124 feet, just to the right of the preceding failure. During the flood season, August 1895, some of the piles of the up stream apron were seen to float up and away, indicating erosion to a depth of 21 feet below crest of weir. Soundings 70 feet up stream of the crest showed that the end wall had sunk 10 feet in two places. The Chief Engineer remarked that the set of the current had been very violent here, removing all loose stone up stream of the sheet piling.

When the subsidence occurred in October, cracks appeared in the masonry pavement down stream of crest, and springs bubbled up below the wall 60 feet down stream of crest, where also some subsidence took place. Sir Thomas Higham remarked: "There is no doubt that, whatever the cause, the weir was then undermined in Bay No. 1." By way of preparation for repairs the shutters were erected on the crest, and an earthen embankment was thrown up down stream of the damaged bay, so as to form a still water pool over the damaged masonry. This bund was completed on November 28th and ponded up water to elevation 720 6 down stream of the crest, up stream of which the water level was 721.0. Under these conditions a more serious subsidence of the weir crest (maximum 3½ feet) occurred the same day, over a length of 164 feet, the masonry pavement down stream to a distance of 40 feet, also cracking badly. The plan and sections of the damage occurring in 1895 are shown in Figs. 39a, b, c.
Fig. 39b shows, to an exaggerated vertical scale, the conditions prevailing in 1895. The water-level upstream in October was 724.9, and downstream 720.2. Head of pressure 4.7 feet. Under this head springs bubbled up below the wall 60 feet from the shutter-line to a height of 721, as shown by an arrow-head. The path of percolation-flow, by Bligh's process, would be 84 feet, and the hydraulic gradient 1 in 18, which, according to him, would imply stability. Evidently, therefore, it was not a case of "piping" due to excess of gradient through sand. There must have been cavities, open...
under the masonry, due to the foundation sand slipping into the deep scours up stream of the weir.

The reader will bear in mind that these accidents to the Khanki Weir occurred only at the weak points, where it crossed former deep channels of the river, in Bays Nos. 1 and 5. The weir was a simple masonry wall, laid across the river, with bottom at R L 714, or 1 foot lower than what was then supposed to be the bed level of the deep stream. Actually, afterwards, the bed was scoured to a depth of R L 701, or lower, since the sheet-piles were uprooted from that depth. Down stream of the crest the structure was fairly well protected by a glaci of masonry 4 feet thick and 58 feet long, with another 54 feet length of stone riprap, 4 feet thick, beyond that, but up stream of the crest there was, in January, 1895, only a talus of loose stone extending 24 feet or so. The scour would thus be 714 - 701 = 13 feet below foundation of weir crest, and the subsoil (which, under the pavement, at least, must have been artificial sand filling at from R L 718 to 714) might easily slip down into the hole at a slope of 1 in 3. That this did, in fact, occur is apparent from the records. The subsidence was greater in the up stream than in the down stream direction. Higham wrote, as regards the theory of "piping," "Ex hypothesis the wall could not have sunk till sand below had found an outlet, and scour and settlement must have occurred at the down stream not the up stream end. But there is no trace of any such outlet. The dropping of 34 shutters, with a head of 4 feet, no doubt caused a rush towards the weir, but it is hardly possible to suppose that this would have been sufficient to underscour the crest in so short a time. The cause of this subsidence must, therefore, remain an open question till more light is thrown upon it." We suggest that the explanation is that the "outlet"
Fig 49 - The Jhelum Weir at Rasul

Fig 49a

Total Base-Length, 229'

Ruling Gradient, 1 in 38

Bligh's Gradient

Actual Hydraulic Gradient

Summit Level
either in January or in October, 1895, account for "piping" towards an outlet in that direction. The further damage, which occurred in November, 1895, could not possibly be attributed to piping, since the difference of water level (721 - 720.6 = 0.4 foot) upstream and downstream of the weir was insignificant. Nor could it be imputed to "blow-up." We submit to the reader, therefore, that the damage in all the cases cited above was due solely to up stream erosion undermining a work and establishing cavities under it in places where the masonry was founded upon artificially filled sand. Faulty manipulation of the shutters, practised with a view to scouring away sandbanks, must also bear a share of the blame for the accidents.

(O) The Jhelum Weir at Rasul (par (39))

Fig. 40 shows a section through the weir across the River Jhelum at Rasul. It is similar to Fig. 9, but shows the hydraulic conditions under a water-level of only 707.4 up stream. The vertical scale has been exaggerated to double the horizontal scale for the sake of clearness. In January, 1916, we bored holes through the pavement of the weir at five places along a line at right angles to the crest-wall and found the subsoil water pressure levels to be as shown in the diagram.

The hydraulic gradients thus ascertained are compared in Fig. 40a with those given by our author's process. We infer that there may be an initial loss of head in entry into the soil (corresponding to that which we know occurs at the entrance to pipes) which our author's process does not take account of.

In the case of the Narora Weir, just before the accident of March, 1898, the pressure pipe a' (see Figs. 35, 37) shows a loss of 6 feet of head, when according to our author's process it should have been only 1.5 feet in the absence of a 30 foot apron up stream, or 3 feet if such apron had existed. One would expect the "loss of head in entry" to the soil to vary with some function of the head of pressure.

(PP) Weir Shutters (par (65))—These are a device dating from the "dull dark days" of irrigation canal science in India. The engineers had no reliable information as to the maximum flood discharges of the rivers across which they had to build their weirs, so they wisely designed their masonry walls too low, by way of error in the direction of safety, and supplemented them with iron shutters, hinged to crest, capable of holding up the lower water levels of the river when erect, and of lying flat on crest so as to "slide" over them during trouble.

At Khanki, or of the Jhelum at Rasul, there were about 1,300 shutters, each 3 feet wide and 6 feet high, requiring a force of thirty or forty men to manipulate them. The weir shutters have been partially or wholly responsible, for most of the damages that have occurred to river weirs in North India. They have continued in use, although fifty years ago the Superintending Engineer, Godavari Delta Canals, wrote as follows: "I have disallowed the so-called self-acting shutters. These I consider utterly useless on our canals, carrying so much silt in the irrigating season. It is certain that those we have are worse than useless, in theory nothing can be more perfect, in practice, nothing less so."

In the year 1918 the shutters on the Jhelum Weir at Rasul were dismantled and the masonry weir built up 4 feet higher, without shutters.
CHAPTER VII

WEIR SLUICES

(1) In all weirs constructed across wide rivers having sandy beds, or much silt in suspension, the provision of weir sluices is a necessity.

The function of these works is two-fold. First, to train the main stream of the river, the natural course of which is modified by the weir, past the canal head, which is located adjacent to the weir sluices, and to retain it in this position, otherwise in a wide river the low water channel might take a course distant from the canal head, leaving the latter shoaled up. Secondly, to keep the river bed in front of the canal head scoured down to the level of the floor of the sluices. For this purpose it is necessary that the weir should obstruct the flow of the river sufficiently to maintain an afflux that will ensure the necessary scour throughout the season when the current is heavily silt laden.

(2) The cill or floor of the weir sluices is laid generally at the deepest bed level of the river, or as near that level as convenient.

(3) The vantage provided has, in the past, in important Indian works, been usually fixed arbitrarily, without calculation of functional discharge capacity. It need not be wider than may be sufficient to pass twice the full capacity of off-taking canals under a moderate afflux, say 2 feet. In one case, that of the Laguna Weir, Fig 13a (post), where the river low supply is deficient, the weir sluices are designed to take the whole ordinary discharge of the river excepting high floods. This is with the object of maintaining a wide, deep channel which may be drawn upon as a reservoir. In such a case the weir sluices form a "barrage" of the Nile pattern across the normal flow of the river, whilst the weir itself becomes merely a spillway for surplus floods.

(4) The efficiency of weir sluices in the prevention of silt deposit in the neighbouring canal head might be said to be ineffective without the cooperation of the latter work. Of late years it has become recognised that the cill of the canal head, or intake, must be located several feet higher than that of the weir sluices, and that it must be supplemented with a movable cill, formed of gates sliding in vertical grooves behind it and capable of rising or falling pari passu with the water surface levels of the river, so as to skim off always "top water" containing as little heavy silt as possible.

Another common feature is the provision of a 'divide groyne', that is, a stone-faced partition embankment running up stream, as a continuation of that abutment of the weir sluices which adjoins the weir itself. This feature was originally designed as part of the system of silt-control practised.
at the Rupar Head Works of the Sirhind Canal. Where that system is not practised the only function of the divide groyne is to discourage currents from flowing parallel to the weir, and close to it, towards the sluices; as such currents are liable to undermine the weir. For this purpose of weir protection the divide groyne need not be more than, say, 200 feet long.

(5) As the object of a weir sluice is to pass water at a high velocity, in order to scour out deposit for some distance up stream of the work, it is evident that the openings should be wide, with as few obstructions as possible in the way of piers, and should be open at the surface, the arches and platform being built clear of the flood level. Further, in order to take full advantage of the scouring power of the current, which is at a maximum at the sluice itself, diminishing in velocity with the distance up stream of the work, it is advisable not only to place the canal head as close as possible to the weir sluices, but to recess the head as little as practicable behind the face line of the abutment of the end sluice vent.

In the examples of old Indian works, which will now be given, we shall find that these conditions have often been violated, with great detriment to efficiency. This in part was unavoidable, as, prior to the introduction of iron drop gates fitted with anti friction rollers, the openings of weir sluices and regulators generally had perforce to be designed of narrow width, in order to admit of the gates being worked under a pressure of water. Thus, prior to the year 1875, the width of waterway in each opening was limited to 5, or 6 or 7 feet only, but experience showed the necessity of increasing width to 20 or 25 feet. Many old works have been remodelled on this principle, and within recent years the invention of “Stoney” live-roller gearing to gates has shown spans of from 40 to 80 feet to be economically advantageous.

(6) With regard to water pressure, weir sluices perform a rôle identical with that of river regulators or, as they are also termed, open dams or barrages. The gates are closed partially, or wholly, as a rule only in order to dam up the water to a certain level, sufficient to force supply down the adjacent canal head. In the Rupar system of silt-control the sluice-gates are closed completely in order to create a still pond wherein the current may drop its heavier silt before it enters the canal. When the silt so deposited has risen to a level within 5 or 6 feet of that of canal head sill, the canal has to be closed, and the weir sluices opened, in order to scour away the accumulated sand.

When the river rises above canal full supply level, the gates can be lifted clear of the flood to afford a free passage to the current, but the Rupar system does not allow this.

Canal head regulators or intakes on the other hand, have occasion to be entirely closed during the highest floods in the river, consequently the regulation they have to perform is entire, not partial, so that these works may be subjected to a much greater statical stress than weir sluices.

Some examples of works with critical and emendatory remarks will now
be given, as by this method the principles governing design can be clearly set forth.
Fig. 1 is a representation of the Dauleshwiram weir sluices* of the weir of that name on the Godaveri River in the Madras Presidency.

This old work consists of fifteen vents of $5\frac{1}{2}$ feet width, which are arched over above canal supply level, presenting a level platform 19 feet high above cill. The openings are completely closed by wooden draw gates in grooves, reaching above the spring line, while the arch segments are closed by narrow panel walls which are supported on wooden beams. The upper gates rest on another line of wooden cills, against which the top side of the lower gates bears. The maximum flood line is $25\frac{1}{2}$ feet above the sluice cills, and so the whole work is submerged during high floods, a depth of $6\frac{1}{2}$ feet passing unobstructed over the platform.

- R.L. of the cill is 28.00
- R.L. of the cill of head regulator 32.00
- R.L. of the crest of the anicut 38.00
- Full supply level in canal 40.25
- Level of submerged platform 47.00
- Level of maximum flood 53.25

On the occasion of floods the gates are either suspended at the top of the grooves in which position they will still somewhat obstruct the waterway through the sluice openings, or else are taken out bodily and removed.

The next plan to be examined is that of Fig. 3, of the Sangam Weir sluices on the Pennar River, Madras Presidency. This is a much more modern work than that at Dauleshwiram, having been constructed in 1870-80.

As will be seen by reference to the plan, the design consists of a series of small vents 6 feet wide and 5 feet high, which are topped by a heavy breast wall carried up to above flood level, which barrier effectively prevents any passage of water except through the sluice vents.

The design, if remodelled nowadays would be somewhat similar in appearance to Fig. 10, or 5 or to the Assuit Regulator, or Rupar Weir sluices, viz. a simple bridge of a few large spans of 15 feet or 20 feet or more, with arches and platform above MFL.

A noticeable peculiarity in Fig. 3 is the roadway provided behind the breast wall, which is carried by a separate set of arches springing from every alternate pier, which pier is lengthened to receive them. This roadway slopes down to the anicut crest, and is probably used for cart traffic.

The defences of the floor against erosion or upward statical pressure are very considerable. There are triple lines of interlacing curtain wells, one at either end of the masonry apron and the third at the termination of a length of very deep rubble pitching. One minor point deserves mention, and that is the disposition of the dwarf partition wall dividing the weir sluice floor from that of the weir itself. This wall is given an outward trend.

* These were dismantled in the year 1910 and replaced by new sluices having 10 vents each of 20 feet built on more modern lines.—Ed.
so it encroaches on the weir apron and tail. This cannot be considered a good arrangement, the partition wall should be perfectly straight and normal to the weir crest. If widening of the exit waterway is deemed re
quiseite this should be effected on the opposite side by throwing the flank wall inwards

(9) The maximum horizontal stress on the superstructure of a partial regulator may possibly be in excess of what is produced by the maximum statical head which means that a greater effect can be produced by a less head. This is owing to the influence of the increased depth of the water fore and aft of the work. We have already seen in Chaps II and VI that

the same applies to weirs particularly when subject to flotation

(10) The Narora Weir sluices are shown in Fig 4. These were built about 1875-78 and present a marked advance on the last example. The vents are 7.25 feet wide in groups of three spans separated by piers 7.25 feet thick. The intermediate piers are 2.75 feet thick or 375 nearly. There are two tiers of arches through both of which an open slit is provided for the passage of the draw gates. The travelling winch runs on top the plat
form, which is 28 feet above floor level, a height sufficient to allow the gates, when raised up, to hang clear of the flood line. The lower tier of vaulting forms a lower platform, 3 feet below high flood level, and the space between the piers, which continues up to the upper tier, is open, allowing the passage of water above the lower platform. The upper parts of the piers are pierced by wide openings at right angles (vide Fig 4a) thus forming a vaulted passage, which is of great convenience for the manipulation and stacking of the gates when drawn up.

It is quite evident that this design could be greatly improved by simplification. The spans should be widened, say to 27 25 feet, by knocking out the intermediate piers and leaving only the abutment piers.

(11) The maximum statical head on the floor is 13 feet, the coefficient c being 15, l will equal c x H, or 195 feet (vide Chap VI). Up to and inclusive of the curtain wall it is 180 feet and if the grouted rubble beyond be esteemed as an impervious continuation the total value of l will be increased to 280 feet. The floor thickness of 5 feet as was also the case with the weir apron (par 28), Chap VI) is deficient. It should be by formula (3) par (25) Chap VI = \(\frac{H - h}{\rho - \frac{1}{\beta}} \) Here h, or the loss of head due to percolation is \(\frac{53}{15} = 3 \frac{5}{3} \) feet \((H - h) \) then will be \((13 - 3 \frac{5}{3}) = 9 \frac{5}{3} \) feet. The correct value of l will then be \(\frac{4}{3} \times \frac{9 \frac{5}{3}}{1 \frac{4}{3}} = 10 \) feet thus the floor is in a high state of tension being only half as thick as it should be. The value of L is 220 feet that is 50 feet longer than that of the weir. The correct proportion will be determined later thus proving a valuable guide (vide par 13 (post)).

(12) The weir sluices of the Rupar Weir (Fig 5) on the Sutlej River are at the head of the Sirhind Canal. No doubt this design was the precursor of the Assuit Regulators which are built on closely similar lines. The vents are 20 feet wide bridge openings the arches springing at maximum flood level. The piers are 5\(\frac{1}{2} \) feet thick the floor of the bridge is a solid mass, being founded on clay or clay and boulders the thickness can thus be reduced below what would be requisite on a sand foundation.

The superstructure consists of a platform carried by a tier of arches springing at flood level and divided as usual into two parts by the slit for the gates and grooves.

The plans in Fig 5 show the work as it stood originally. The crest of the weir has since been raised from 865 to 865 \(\frac{2}{3} \) and provided with 6 feet deep collapsible shutters capable of raising supply level from 866 5 to 872 5.

* Yet it has shown no weakness during the past fifty years. We understand that the foundation soil of these sluices is not pure sand. It seems a pity that stand pipes have not been inserted vertically in this floor by way of revealing the hydrostatic pressure in the soil under the floor — Ed.
The canal head cill has also been raised from 859 or 2 feet above weir sluice floor to 866 or 9 feet above it, and all the small jack arches and piers shown in elevation have been cleared out leaving 21 foot openings. The weir sluice in elevation is shown in Fig 5a. The present weir sluice gates now close to above the arch spring line so that the sluice head can be entirely closed if necessary. The work is on a boulder bed with coefficient about 9. Fig 5c is from a photograph of the work.

![Weir Sluices of the Rupar Weir at the Head of the Surhund Canal](image_url)

(13) A section and part elevation of the Chenab Weir Sluices at Khanki are given in Fig 6. These are very similar to the Rupar Weir sluices. The depth upheld by the gates is 7 foot less being 13 feet against 14 feet at Rupar. Here three roller gates are employed raised by a travelling winch. The outside arch which has so good an appearance is here replaced by iron or steel girders which carry the outer rail of the traveller. This work being on a river bed whose sand is of class 2 with coefficient 15 we are able to compare it with the Narora Weir sluices the unit flood discharge of the Chenab River over the weir is however double that of Narora. This latter item influences the value of \(E \) the width of the talus as has previously been shown in par (27) Chap VI. Whereas the width of the floor apron is a function of the head both are influenced by the coefficient representing the

* We understand that neither the Khanki nor the Narora Weir Sluices have a sand foundation — Ed
nature of the bed, consequently the formulas applicable to weirs will only require multiplying by some enlarging factor to render them suitable for the weir sluices

If in formula (4), par (27) Chap VI, the multiplier of \(c \) be increased from 10 to 15, the results will be as in the following comparative table

\[
(L), \text{ or width of talus for weir sluices} = 15c \sqrt[10]{\frac{Hb}{10}} \times \sqrt[75]{\frac{q}{75}} \tag{1}
\]

The following is a comparison between the values of \(L \) of Narora and Khanki worked out by this formula with the actual dimensions —

<table>
<thead>
<tr>
<th>Name</th>
<th>(c)</th>
<th>(Hb)</th>
<th>(q)</th>
<th>Equation</th>
<th>Amount</th>
<th>Actual Value of (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narora</td>
<td>15</td>
<td>10</td>
<td>75</td>
<td>225 (\times) 1 (\times) 1</td>
<td>225</td>
<td>216</td>
</tr>
<tr>
<td>Khanki</td>
<td>15</td>
<td>7</td>
<td>150</td>
<td>225 (\times) (\sqrt{7}) (\times) (\sqrt{20})</td>
<td>265</td>
<td>300</td>
</tr>
</tbody>
</table>

With regard to \((W) \) the length of the apron or floor beyond the head work, in both Narora and Khanki the length is given the same. This would tally with formula (1), Chap VI, if \(4c \) be increased to \(7c \), the formula will then become

\[
W = 7c \sqrt[13]{\frac{Hb}{13}} \tag{2}
\]

Thus for Narora and Khanki works out to 105, \(H^a \) being 13 in either case

(14) The section in Fig 6 will now be examined as regards hydrostatic pressure

First as regards length of percolation Here the value of \(l \) should be 15 \(\times \) 13 = 195 the same as at Narora, it actually measures 227 feet. The thickness of the floor at the critical point just beyond the head work is only 4 feet, according to formula (3) par (25) Chap VI, \(l \) works out to 75 feet. The floor is, therefore, in high tension. This could be avoided by making it thicker at the root, tapering to 4 feet at the end, which is the scientific profile for all floors under diminishing hydrostatic pressure. Further, a rear extension of the floor up stream of the head work in the deep channel would be a great improvement and should invariably be adopted in all weir sluices founded on sand. As we shall see, this precautionary measure has been carried out in the case of the Jhelum Weir sluices (Fig 7), where however, it is not so much required

One peculiarity of this work is the slope given to the apron which drops 1 in 20 down to RL 710, which is 5 feet below the level of the weir talus as also that of the sill of the bridge floor. This would appear to be a good arrangement. A long flank division wall separates as usual the weir sluice

* The discharge per foot run of waterway through sluices is very different from that per double. The masonry crest of Khanki and like Narora Sluices the Khanki
way from the weir itself. This also extends upstream to beyond the canal intake, forming the 'divide' wall mentioned as a desirable adjunct in par (4) (vide Fig 8b, Chap VI).

The concrete blocks forming the talus are a common feature in weir sluices of Punjab canals. They can easily be laid in water. They are 4 feet square and 2 thick, and consequently weigh 2 tons each. The concrete is not cement concrete. Portland cement being used very little in India on account of its cost. Besides excellent hydraulic limestone is obtainable everywhere in Northern India in a nodular form close to the surface where it is quarried just as gravel would be.

(15) The Jhelum Canal Weir sluices at Rasul are illustrated in Fig 7.* The permanent weir crest is at RL 707.5. The value of H is consequently 6.2 feet. According to formula (1), par (13), the value of L works out as follows: $225 \times \sqrt{65} \times \sqrt{2} = 256$ feet.

The actual value is 255 feet, so that the theoretical value agrees closely with the actual. If the width of the masonry floor according to formula (2), par (13) = $7.5 \sqrt{H^2 / 13} = 105 \times \sqrt{11.5 / 13} = 99$ feet, it is actually 108 feet. Owing to the provision of a rear apron the hydrostatic pressure at the critical point is reduced from 11.5 to 3.5 feet for which the 5 foot thickness is more than sufficient.

This weir is provided with a long divide wall upstream shown on the site plan Fig 9b, Chap VI. This wall runs parallel to the axis line of the river and to the left flank retaining wall.

The downstream outer flank wall is normal to the common axis of the weir and of the weir sluices which are on one line.

(16) We now come to a different type of weir sluice from any of the foregoing which has only been adopted in the Province of Behar. The governing principle of this design is to afford a...

* Fig 7 is out of date. The needles were scrapped twenty years ago and replaced by gates in three tiers sliding in vertical grooves and these again were superseded in the year 1917 by Stoney gates 14 feet high to each vent of the sluices. — Ed.
free passage of flood water between and over piers, which are only of the necessary height for regulation purposes and have no arched superstructure whatever. The water is held up by collapsible gates of large size, working between the piers.

The designers of these open sluice ways in the year 1875 were evidently of opinion that it was unnecessary to have the weir sluice floors at a much of any, lower level than that of the canal head regulator. This has proved to have been a mistake. It is absolutely necessary that the difference of floor level of these two adjacent works should be considerable.

With the heavy drift sand found in these rivers a sill several feet higher would exclude such sand.

(17) Fig 8 represents the Dehri Weir sluices on the Son River. This work consists of twenty openings 20½ feet wide divided by piers 5 feet thick and 33 feet long. These piers are only 10 feet high. The openings are closed by double collapsible wooden gates 20 feet long and 10 feet high. The second gate is for temporary use, and is first raised by hand which enables the real self falling gate to be hauled upright by tackle, when the temporary first gate is lowered out of the way.

(18) The weir was provided with sixteen central sluices of 20½ feet width. The object
in view was to prevent cross-currents and to tram another channel straight on to the weir. These expensive works, however, have since been built up.

The block plan (Fig 8a) shows the position of the canal head, which is recessed much too far behind the weir sluce abutment. The alignment of the dwarf wall dividing the weir sluice and the weir is shown on the block plan.

As regards the remodelling of the adjacent canal head, see next chapter.

(20) The Assuit and Zafta works, to which reference has more than once been already made, are examples of partial regulators.

The plans of the former are given in Fig 10.

The Assuit Regulator was built across the Nile to regulate the supply in the Ibramiya Canal.

This work will never be entirely closed, and the outside difference of level to be provided against is that between RL 48.40 and 45.85, i.e. 2.55 metres (vide Fig 10). This is the head, on the extent of which the design of the floor and also the superstructure depends.

The value of \(l \) will then be (taking \(c \) as 18) \(18 \times 2.55 = 45.90 \) metres. It measures actually, 40 metres horizontally together with 10 vertically, total 50 metres. If the low supply were all held up, the head would be 47 metres, requiring 85 metres as length of percolation.

(21) With regard to the superstructure, the resultant line of maximum pressure should pass through the outer boundary of the middle third of the base of the piers. This test is best arrived at by graphical process and will be worked out for the Ibramiya Regulator, and so need not be repeated here. This determines the requisite base length of the piers.
The spans are 5 metres, 16 feet, and the piers are 2 metres thick. A too high proportion of 45, every third pier is an abutment pier. The general arrangement closely resembles that of the Rupar Weir sluice head but is even more simple. The working platform is carried on arches springing at high flood level. These arches are divided at the grooves, the open space being wider than usual. A travelling winch straddles this
opening. The draw gates are of steel, fitted with anti-friction rollers, stanched by loose stanching rods as employed in Stoney's patent gates.

For plans of gates grooves and travelling winch vide Min Pro Inst CE Vol CI VIII.

The foundations were originally designed as rows of sunk blocks under
each pier, connected by a concrete floor. Owing to the successful introduction of cast iron tongued and grooved piling, the use of blocks was abandoned as being slow and expensive, and rows of sheet piling each side of the floor 25 feet deep were substituted, the depth of the floor being increased to a uniform thickness of 10 feet. This depth is necessary to properly distribute the weight of the superstructure to reduce the pressure to 1 ton per square foot.

(22) The detached masonry blocks shown in Figs 10 and 10a are a form of construction originated in the Punjab. These blocks are made of rubble masonry in cement mortar, and are laid in position when set, on the wet sand or in water by a heavy travelling crane. When in situ the interstices are filled up with cement concrete. It thus forms a solid mass of heavy masonry. This arrangement is admirably suited for a continuation of the masonry floor of a regulator. The advantage of the system lies in the fact that the blocks can be deposited in water, the interstices likewise being filled up by depositing cement concrete in skips, or else the work can be partially pumped dry to facilitate this operation. In the Punjab the blocks are usually made with stone ballast in ordinary lime mortar, and the spaces between blocks are left open, in order to permit free settlement.

(23) The plans of the Ibramiya Canal Head are given in Fig 11. This work, although a canal head, is but a partial regulator, and is consequently in a similar case to a river regulator or a weir sluice. The general arrangement of this work is identical with that of the Assiut Barrage. The Ibramiya Canal Head is, however, subject to a greater head of water than the latter work.

The maximum head of water to which the floor is subjected is the difference between low Nile level and the canal bed, i.e., 4775 – 4450 = 325 metres, so that this floor is under greater statical pressure than the Nile regulator. The superstructure is also subjected to a much greater pressure than the Nile regulator, owing to the great depth of water on both sides of the gates, which pressure is a maximum in Nile flood with full supply in the canal.

The lengths of the piers in either of the regulators are much the same, the base being 1350 metres in each case, the top width is somewhat less in the Ibramiya work. The spans and thickness of the piers are the same in both cases, but the Ibramiya Canal Head has no abutment piers. The masonry floor is made wider in the canal head, being 3140 metres against 2650, a difference of 5 metres. This is owing to the greater head to which it is subjected. These two are models of good design.

(24) The value of I in this case should be 325 × 18 = 58 metres. The horizontal component is 45 metres, add the vertical of 10 metres, the sum is 55 metres. If the floor thicknesses at each end be added in it would increase the amount to 61 metres, so that in this instance the actual closely cor-
Chapter VII—Weir Sluices

responds with the calculated, forming a corroboration of the correctness of the value assigned to \(c \), viz. 18. In these calculations the lower line of sheet piling has not been included

(25) The previous examples are all of works founded on sand. At the heads of rivers, before the stream has left the hilly, rocky country near its

source and debouches into the plain, the river bed is generally composed of rock or boulders, the latter being more or less mixed with sand or shingle. It will be as well to give an example of a head work thus circumstanced.

Figs 12, 12a, 12b are reproductions of the record plans of the Jumna Weir sluices at Tajawala at the head of the East and West Jumna Canals. Of these Fig. 12 is a longitudinal section through part of the work.

The eight spans of 23 feet 2 inches at the east end of the west sluices have
been closed with a masonry wall up to weir crest level in order to reduce
waterway and to force the current towards the canal head at the west end
The afflux level is 17 feet above the floor of the weir sluices while full
supply level in the canal corresponds to the crest of the weir, and is 8 feet
above same level The actual statical head on the weir and weir sluice floor
is 10 feet

(26) In this case, however, the boulder bed is capable of great resistance
to erosion, consequently the talus can be curtailed, at the same time,
owing to the great abundance of building material available at the actual
site, the cost of a boulder masonry floor will be comparatively so inexpens-
ive that the masonry apron can be carried wider than would otherwise be
advisable

(27) A work built on boulder formation cannot be considered free from
hydrostatic pressure below the floor The coefficient suitable for boulder
beds varies from 5 to 9 In this case the actual value of l is about 90 feet,
this would make the coefficient 9, which has been adopted (par (9) Chap VI)
The floor is too thin for the hydrostatic pressure *. The value of $(H - h)$ at
its commencement is 6.5 feet, to meet this, the floor, half of which lies
below the L W L, has a mean specific gravity of 1.75, and is 3.3 feet thick,
tp is then 6.1, but it should be $\frac{4}{3} \times \frac{6.5}{1.75} = 5$ feet thick

The canal head or intake connected with the weir sluices is illustrated
in the next chapter According to formula (1), Chap VI, the least length of
apron of the weir should be $4c \sqrt{\frac{H^2}{13}}$. H^* in this case being 8 feet, W will
equal 25 feet With regard to the weir sluices, by formula (2), par (13) of this
chapter, W should have a minimum value of $7c \sqrt{\frac{10}{13}} = 7 \times 9 \times 88 = 55$
feet, which it actually measures

(28) In the United States a large number of canals have been constructed
in recent years, the head works of which display considerable ingenuity in
general design, some are diversion weirs, as dealt with in the last chapter,
of low height, but the majority are constructed over the rocky beds of
mountain torrents of considerable height, intended to form storage reservoirs
similar in lines to the Betwa, Periyar, and Assuan works

One example of low weir across a wide sandy river has very similar
conditions to Indian works This is the Yuma irrigation project about to
be undertaken, a description of which is given in ' Irrigation Engineering,' an
excellent American work, from which the plans have been obtained

Fig 13 is a cross section of the Colorado River From this it will be
seen that the general level of the river bed is, roughly, about R L 143.0,
the deepest part of the channel being about R L 131.00 The weir crest

* Yet it has shown no weakness during the past fifty years —Eb
has been fixed at 10 feet above L.W.L. i.e. at 151.00. The design of the weir is a close copy of the Okhla (Indian) type. The section has been given in Fig 29 Chap VI. The level of the horizontal talus where the slope ends is R.L. 138.00 i.e. 3 feet below L.W. The sluice way floors on each side of the weir are at the same level i.e. 13 feet below crest. The weir is 4,500 feet long and the estimated maximum flood of the river is 198,000 cubic feet (second feet).

The arrangement of the rest of head works viz. the weir sluices and canal head is so remarkable as to be deserving of considerable attention. The weir ends at both flanks on the existing rocky banks of the river.

Beyond these and separated from the weir sluice way channels are cut in the solid rock on either flank. These being quite independent of the weir it is evidently a convenience to fix the position of the weir sluice head below the weir so that the junction of the scouring channel with the river bed will take place well clear of the latter work.

Another peculiar arrangement is the alignment of the two canals which instead of being as is almost invariably the case in Indian canals parallel to the axis of the weir until the river banks are well cleared are aligned parallel to the river and at right angles to the weir axis. This arrangement is necessitated by the level of the rocky ground in the vicinity of the head works. The canal head vents therefore which are situated just above the weir sluices in the side of the sluice way channel discharge through the right flank of the canal i.e. at right angles to its direction.
The sluice way floor is kept at a low relative level, viz., R.L. 138, or 9 feet below the level of cill of the canal head, in order to form a silt settling basin, to be periodically scoured out by raising the regulator gates in imitation probably of the corresponding data of the Rupar Head Works of the Sirhind Canal (see Fig. I, Chap. VIII). The cill level of the canal head is at R.L. 147 00, thus a depth of no less than 9 feet of sand can accumulate in front of the canal head, and even more, if double draw gates were adopted. But experience at Rupar has shown that as soon as the sand has risen to within 5 or 6 feet of cill level of canal head, it begins to pass over the cill and into the canal. When that happens the canal head is closed and the weir sluices are opened for scour.

At Laguna the water level above the weir, of the maximum flood, is at R.L. 156 000, or 18 feet above, the weir sluice sill at 138. The high flood level at Rupar is 875, or 18 feet above floor of weir sluices, which is at 857. The maximum flood of the Colorado at Laguna is passed with an afflux of 5 feet. That of the Sutlej at Rupar has an afflux of 2 feet. The Rupar system of silt-control is open to the serious objection that it necessitates periodical closing of the canal and consequent damage to agriculture. It is not practised anywhere in the Punjab, except at Rupar. Elsewhere the river is allowed to flow freely through the weir sluices, so as to keep the river bed scoured deep in front of the canal head.

(29) The Madhopur Weir sluices of the Barn Doab Canal, a print from a photograph of which is given as Fig. 14, form an instructive example of remodelling an old work on modern lines. The sluices originally consisted of a series of 5 foot vents. These were demolished by floods and rebuilt with twelve vents, each 20 feet wide, with piers 5 feet thick between vents, with an arched bridge 13 over all. This type of sluices, 12 x 20 feet, has been the model from which the subsequently built sluices at Rupar, Khanki, etc., have been copied. The pier noses and the abutments are faced with timber as a protection against damage by floating logs which, during floods,
float down from the Himalayan forests in vast numbers. The 20-foot vents were supplied with double roller gates similar to those in the Chenab and Rupar Weir sluices, but gates of the "Stoney" pattern are now in use.

The view shows the two large travelling winches used in lifting the gates, standing on the tram line.

(30) The thickness of the floor of a weir sluice head founded on sand is subject to kinetic as well as to hydrostatic considerations, and with regard to the latter, formula (3) of Chap VI, viz. \(t = \frac{\frac{H - h}{\rho - 1}}{\frac{4}{3}} \), will apply, whereas for the former, a heavy floor being a desideratum, the following empirical rule will be found in accordance with practice, viz —

\[
t = \sqrt[3]{\frac{3H}{2}}
\]

(3) \(H \) being the statical head.

(31) The term "Undersluice," familiar in Northern India, is in reality a misnomer, as in modern weir designs, "underslues, literally as such, do not exist. Weir sluces, or weir scouring sluices, is a more correct nomenclature.

In the United States, the term undersluice applies only to weir or dam body sluces—as those in the Assuan or Bhatgarh dams.
CHAPTER VIII

CANAL HEAD REGULATORS

Fig. 1 (d)—Head Regulator of the Sirhind Canal at Rupar

(1) The function of canal head regulators or intakes is to adjust the admission of water into the canal from the river of supply, according to the requirements of the canal.

In almost all cases this regulation is entire not partial; that is to say on the one hand the full supply level in the canal cannot be allowed to be exceeded and on the other hand the head work should be capable of completely shutting off all supply even during the highest floods in the river. From the above it will be evident that the pressure of the statical head of water to be provided may be much higher in this class of work than in weir sluices while the dynamical forces which are such potent factors in the latter are very much less in head regulators.

(2) The following principles regulate the design of canal heads—

First. The width of the openings should be as large as is consistent with easy manipulation of the draw gates.

Secondly. In order to prevent the entrance of sand into the canal which has caused much trouble and immense annual expense in clearance the
cill of the intake must be raised several feet above that of the adjoining weir sluces. This is arranged for by constructing a crest wall across the entrance of the vents on top of which the lower gate rests or else by a still better arrangement the lower gate can be passed down behind the breast wall so as to act as a cill over which the water may flow by this device only surface water is tapped from the river. At Rupar at the head of the Sirhind Canal the deep channel in front of the canal head is allowed to silt up and is then periodically scoured out by opening the gates of the weir sluces but this practice has not been adopted at any other canal head in the Punjab. It involves the closing of the canal from time to time and this is prejudicial to agriculture.

(3) The Sirhind Canal (Fig 1) was first opened for irrigation in the year 1882 and soon after experienced severe silt troubles. So much sand was swept from the river into the canal and deposited on the bed of the latter as almost sufficed to put it out of action during the summer. In the year 1891 about 36,000,000 cubic feet of sand were deposited in the first four miles of the canal making a shoal averaging 9 feet deep whereas the designed full water depth was only 9 feet. Various remedies were applied but the one that proved successful was as follows. The canal head was a bridgeway with thirteen spans of 21 feet divided by jack piers into thirty nine bays each five feet wide. By knocking out the jack piers the waterway was increased from 195 feet to 273. At the same time a masonry wall 7 feet high was built across the entrance to the vents. Behind this was arranged a movable cill gate 3.5 feet high so that the water could always be passed into the canal over the masonry cill at elevation 866 or over the gate cill at any level between 866 and 869 so as to skim off top water as free from sand as possible. The paved floor of the river bed in front of canal head and weir sluces being at 857. The masonry weir crest was raised from 865 to 866.5 and on this were erected hinged shutters 6 feet high reaching up to 872.5. Whenever the canal was open the weir sluce gates were closed so that the current dropped its sand in the pocket in front of them. When this shoal rose to within 5 or 6 feet of top of gate cill the canal was closed and the weir sluces opened and the shoal was scoured away through the latter.

(4) The original design of the Chenab Canal Head at Khanki is shown in Fig 2. In this case also it was found necessary to knock out the jack piers under the main arches so as to increase width of waterway from 6.2 × 3 × 12 = 234 feet to 24.5 × 12 = 294 feet and also to raise the masonry cill from elevation 717 to 721 or 6 feet above the floor of the weir sluces and to furnish it with a movable gate cill capable of rising up to 725. An additional canal head was also built with twelve spans of 24.5 feet thereby increasing the total width of waterway to 441 feet. The Rupar system of silt exclusion was tried but it was found inapplicable to local conditions. Silt trouble persisted and it was found necessary to build up the masonry crest of the weir 4 feet higher also up to 7.65 with 6 foot shutters on top of that again,
and to furnish the canal head with a new movable sill capable of rising up to elevation 727. The 3 feet gates of the weir sluices were scrapped and replaced by single gates with "Stoney" live rollers.

Fig 2(a) 741.0 H.F.L.7360 Now 730.5
Crest Weir Shutters 728.9 Now 733
Canal Full Supply 728.9

Fig 2(b) Details of Piers
Jack Piers done away with in the Year 1912

Fig 2(c) Jack Piers and Jack Arches thus dismantled in the Year 1912

Fig 2 - Chenab Canal Head at Khanki, as remodelled
Canal intakes are generally built on a clay or loam foundation, so that although subjected to a much greater hydrostatic pressure than is the case with weir sluice floors the pressure generally stops short of the beginning of the floor. This is evidently the case here (Fig 2). The head is 22 feet and with \(c = 15 \) \(l \) will be \(15 \times 22 = 330 \) feet. The actual length of percolation provided is but 94 feet consequently the head work must rest partly on a clay substratum. In such cases the hydraulic gradient will be horizontal and the pressure area a rectangle as there is no outlet for percolation.
(5) The Sơn Canal Head at Dehri (Fig 3) is situated on a river which carries an immense quantity of heavy sand in suspension.

The head regulator was located at the bottom of a deep quadrant bay, some distance from the undersluces, and the pier noses are recessed 30 feet behind the weir sluice land abutment. This is shown on the block plan, Fig 8a, Chap VII.

The sill of the canal head is flush with that of the weir sluice. This arrangement, as might well be imagined, was not satisfactory, regarded from the point of view of silt exclusion. Great masses of sand were yearly washed into the canals at both sides of the weir, necessitating the maintenance of a fleet of steam dredgers in the attempt to keep the canal open at all. This nuisance continued for some five-and-twenty years, until at last the Rupar method of silt control was adopted, viz., a raised sill to the intake, and the closure of the gates of their weir sluice as much as possible, so as to allow of still water in the deep channel, whereby deposit outside the canal head is encouraged.

(6) The canal head waterway was increased by construction of a supplementary head, to be used only at times of high supply in the river in conjunction with the old head, a temporary raised sill being formed in the latter by keeping planks in the grooves below the gates which are single and of antiquated pattern. Whenever the river water level rises above 336.5 (1 foot above top of weir shutters), the wooden sill of the canal head, composed of kurries, must never be lower than 333.5. In this way only top water is taken into the canals, and when the river rises above 338.0 the canal heads are closed altogether.

Fig 4 is the section of the supplementary surface supply inlet. It consists of twenty small openings roofed by slabs, outside which are cast-iron inclined frames, on the sloping sides of which "kurries" or flashboards are placed up to any height which may be desired, and at time of floods the vents are closed by drop gates, and the regulating planks removed. The raised cills or crests of the two works are kept at the same level.
The photograph Fig 4a is derived with others by permission from The Irrigation Works of India.

(7) The head regulator of the Son Canal is of the so-called U pattern having a depressed arch springing at canal full supply level over which are two spandrel walls, the space between being filled up with rubble stone or concrete. This work is also partly, if not wholly, on a clay foundation. The piers are much too thick, being nearly 75.

(10) The Narora Head Work (Fig 9) was the first work supphed with gates fitted with rollers or rather wheels, the axles of which work in bearings.
There is no disadvantage in this, particularly at this site, where the canal is in rock cutting, a small extension of the floor and wings being all that can be necessary. It is suggested that this arrangement of double sluices, which, as far as is known, has hitherto not been tried, is worth of adoption in all head works where the river in flood is very deep and where silt deposit gives trouble. The silt in suspension could be allowed to accumulate in front of the head work to a considerable depth, and then by opening the weir sluice gates it could be swept out, leaving a clear channel ready for the time when the water level has fallen, and supply is drawn from the lower gates.

With the adoption of roller gates, the lifting apparatus can consist of a travelling winch spanning the groove openings, the external arching being provided for that purpose. In the existing work, screw lifting gear is used, and that of a primitive pattern, the female screw, held in collars, having the motive power applied, while the male screw rod attached to the gate rises.

* * * But see Fig 13 par (15) Treble tiers of vents had already been applied to the head of the Treben Canal in the year 1901. Also to the head of the Upper Jhelum Canal at Mangla in 1908. Fig 11 shows only two tiers of vents, but Fig 11a shows three tiers. — Ed.
through it These are worked with great difficulty The absence of roller attachment necessitates the use of screws to force the gates down against the water pressure, whereas where rollers are provided the gates drop into place of their own weight and only require gear for raising

(13) Fig 12 shows the Jamrao Canal Head off-taking from the River Nara, an old channel of the Indus River

In this design the canal bed is at the same level as the floor of the weir sluices Across the head a breast wall is built 5 feet high The canal full supply is 8 feet deep and the crest of the weir shutters is 10 feet above floor, consequently 5 feet of water can pass over the raised sill crest, which will afford the supply required in the canal

For the purpose of diminishing end contraction in the submerged film passing the dwarf weir, the openings have been made very wide, viz, 25 feet spans, of which there are six The sprouting of the arches is at maximum flood level, i.e., at 15 feet above the canal bed, the closure of the 20 feet space above the sill is effected by baulks, or regulating beams, lowered into grooves and raised by means of differential tackle The weir sluices shown in section in Fig 12b consist of seven spans of 20 feet, total vantage, 140 feet against 150 feet of the canal head The partial regulation of the weir sluice is up to a depth of 10 feet, and is effected by three draw gates manipulated apparently by fixed winches at each pier head

(15) In Fig 13 are represented plans of the Trebeni Canal Head The Trebeni Canal, which is situated in the province of Bihar and Orissa takes out of the Gunduk River in its upper reaches The design of the work is of the usual heavy Bengal pattern of the U shaped type added to which, however, is a novel device for the purpose of tapping surface water at different levels of the river with the object of preventing or at least ameliorating, the entry of silt into the canal This is effected by the addition of two tiers of arches built towards the river These vaults are closed by baulks let into grooves so that the water can be admitted over them at three different levels

The waterway is designed so that full canal supply can be obtained with only 2 feet depth passing over the platforms The water when admitted, falls into the cistern formed in front of the sluice proper which latter can be closed by a gate operated by a screw worked by a capstan head In place of the breast wall, now usually adopted to raise the sill of a canal head the whole floor of the regulator is raised 3 feet above the canal bed, which level is reached by a pitched slope succeeding the masonry floor This is shown in the transverse section of Fig 13

(16) The principle of the design is much the same as that of the Betwa Canal Head (Fig 10) It no doubt answers its purpose very well but the question naturally arises whether the equally good results could not be obtained at a much less expenditure The section of the work is to the eye exceptionally heavy even for the great head of 26 feet of water which it has to withstand The only way to settle this question is by an alternative
There is no disadvantage in this particularly at this site where the canal is in rock cutting a small extension of the floor and wings being all that can be necessary. It is suggested that this arrangement of double sluices which, as far as is known has hitherto not been tried is worth of adoption in all head works where the river in flood is very deep and where silt deposit gives trouble. The silt in suspension could be allowed to accumulate in front of the head work to a considerable depth and then by opening the weir sluice gates it could be swept out leaving a clear channel ready for the time when the water level has fallen and supply is drawn from the lower gates.

With the adoption of roller gates the lifting apparatus can consist of a travelling winch spanning the groove openings the external arching being provided for that purpose. In the existing work screw lifting gear is used and that of a primitive pattern the female screw held in collars having the motive power applied while the male screw rod attached to the gate rises.

But see Fig 13 par. (15) Treble tiers of vents had already been applied to the head of the Trebeni Canal in the year 1901. Also to the head of the Upper Jhelum Canal at Mangla in 1908. Fig 12 shows only two tiers of vents but Fig 12a shows three tiers—

228 DESIGN OF IRRIGATION WORKS
through it. These are worked with great difficulty. The absence of roller attachment necessitates the use of screws to force the gates down against the water pressure, whereas where rollers are provided the gates drop into place of their own weight and only require gear for raising.

(13) Fig. 12 shows the Jamrao Canal Head off-taking from the River Nara, an old channel of the Indus River.

In this design the canal bed is at the same level as the floor of the weir sluices. Across the head a breast wall is built 5 feet high. The canal full supply is 8 feet deep, and the crest of the weir shutters is 10 feet above floor, consequently 5 feet of water can pass over the raised sill crest which will afford the supply required in the canal.

For the purpose of diminishing end contraction in the submerged film passing the dwarf weir, the openings have been made very wide, viz., 25 feet spans, of which there are six. The springing of the arches is at maximum flood level, i.e., at 15 feet above the canal bed, the closure of the 10 feet space above the sill is effected by baulks or regulating beams, lowered into grooves and raised by means of differential tackle. The weir sluices shown in section in Fig. 12b consist of seven spans of 20 feet total vantage, 140 feet against 150 feet of the canal head. The partial regulation of the weir sluice is up to a depth of 10 feet and is effected by three draw gates manipulated apparently by fixed winches at each pier head.

(15) In Fig. 13 are represented plans of the Trebenni Canal Head. The Trebenni Canal, which is situated in the province of Bihar and Orissa, takes out of the Gondhuk River in its upper reaches. The design of the work is of the usual heavy Bengal pattern of the U-shaped type added to which, however, is a novel device for the purpose of tapping surface water at different levels of the river with the object of preventing or at least ameliorating, the entry of silt into the canal. This is effected by the addition of two tiers of arches built towards the river. These vaults are closed by baulks let into grooves, so that the water can be admitted over them at three different levels.

The waterway is designed so that full canal supply can be obtained with only 2 feet depth passing over the platforms. The water, when admitted, falls into the cistern formed in front of the sluice proper which latter can be closed by a gate operated by a screw worked by a capstan head. In place of the breast wall, now usually adopted to raise the sill of a canal head, the whole floor of the regulator is raised 3 feet above the canal bed, which level is reached by a pitched slope succeeding the masonry floor. This is shown in the transverse section of Fig. 13.

(16) The principle of the design is much the same as that of the Betwa Canal Head (Fig. 10). It no doubt answers its purpose very well, but the question naturally arises whether the equally good results could not be obtained at a much less expenditure. The section of the work is to the eye exceptionally heavy, even for the great head of 26 feet of water which it has to withstand. The only way to settle this question is by an altern
design which is furnished in Fig. 14. In this the alternative design (Fig 11), has been followed, but with the provision of three vents, one above the other, in each bay. The spans are widened to to feet the thickness of the piers being retained at 4 ft. The platforms situated above the arches are made deep.

Fig 13—Treben Canal Head on Gunduk River
enough to accommodate the drop gates of which there are four each, one of which is working in a separate groove. The lower one is provided in the bottom of the section with a space for each of the gates so as to enable the upper gate to be either lowered behind the bottom gate or raised above it without blocking the vent. In the section the bottom
gates are shown closed, the second one is partially open, admitting water, while the third, which the water has not yet reached, reposes in the space provided for it below its vent. This arrangement permits of easy regulation of the water at any level—only surface water being drawn. The water falls over on to the floor of the regulator beyond the arches. There can be no reasonable objection to this, the floor, if properly built, will stand a vertical fall without the least cause for anxiety, although the firmly-rooted objection to vertical overfalls without the provision of water cushions is an old long-exploited prejudice which still lingers on. The stress diagram and the reciprocal lines of pressure on the section prove that the centre of pressure falls 2 feet within the middle-third of the base.

The maximum unit pressure in the masonry of the pier works out to 37 tons—a quite moderate amount. The following comparative statements of the cubical contents per foot run show a saving of 40 per cent in the alternative over the original design—

<table>
<thead>
<tr>
<th></th>
<th>Contents in one bay</th>
<th>Length</th>
<th>Per foot run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original section</td>
<td>-</td>
<td>3856</td>
<td>385</td>
</tr>
<tr>
<td>Revised</td>
<td>-</td>
<td>3300</td>
<td>236</td>
</tr>
</tbody>
</table>

(17) Almost all canals take off at right angles to the axis of the parent stream, i.e., generally parallel to the direction of the wear. As the course of the canal must be more or less parallel to the river, this arrangement involves a large curve in the canal excavation close to the head work. This is objectionable as causing a diminution of the velocity of the current, with consequent increased liability to the deposit of silt. The Kistna East Canal, Madras Presidency (Fig. 28b, Chap VI) takes off at a very sharp angle to the axis of the stream, probably in order to avoid a rocky hill or some such impediment. The difficulty in that case is got over by the head regulator (which is "on the square") discharging into a large basin from which the canal takes out. A similar difficulty is provided for by the arrangement shown in Fig. 13a, Chap VII, of the Laguna Head Works.

It is advantageous to construct skew heads at some canal head sites. The disadvantage which is inherent in a skew head is the widening of the opening involved and consequent increase in the length of the gates. Now, however, that anti-frictional rollers can be fitted to any gates, be they iron or wood, thus immensely reducing the power required to manipulate them, this objection vanishes altogether. There remains only the question of cost, the skew head being naturally somewhat more expensive.

In Fig. 15 a design for a skew head is exhibited. The angle of a skew is 60 degrees.

(18) If the floods in the stream or river are not very high, a regulator with gates at the canal head can be dispensed with altogether, and the
canal intake will then consist simply of an opening protected by masonry flank walls and floor. This arrangement is common in American head works.

(19) The majority of rivers and streams in Burma from which water for irrigation can be taken are not, as in the case of Upper India, large rivers with perennial flow, in many cases derived from the melting of snow on the Himalayas but are intermittent in flow coming down in occasional freshets during the rainy season and running perfectly dry during most of the rest of the year. Such streams are numerous in most sub tropical countries. It is a common error to suppose that small rivers that only bring down water to local rainfall are useless for irrigation purposes, such is by no means the case. Where the local rainfall is insufficient to raise valuable crops such as
From an intermittent stream, it can be supplemented with great advantage by irrigation works. Besides which, these rivers often come down...
in flood when there is no local rainfall a ramburst in the hills where their source lies causing a freshet. The water can be utilised either by direct irrigation from a canal or a combination of direct irrigation and storage. The author has constructed several works of this description in Upper
Burma. First, the stream was dammed and water taken off by a canal, from this direct irrigation on fields took place, and surplus water was allowed to pass through the fields, which were under a rice crop, and tail into another drainage line. This again was dammed, and another small canal taken off. In this way several drainage systems were practically connected, the main stream tailing into a large tank, whence the surplus water over the waste weir found its way into other tanks and eventually into the original watercourse, which again was dammed and the procedure repeated. The fields themselves particularly rice fields which are banked by mud walls 12 inches high, will hold an immense deal of water, and consequently do not require a continuous supply, a freshet once a week or ten days would keep them well supplied with water. The same applies to other crops, but in a less degree.

(20) The thickness and length of the floor in the examples given are designed on the assumption that the foundation is sand. The head regulators of canals and the weir sluices are often founded on clay. In such cases no special calculation is required for the stability of the floor with regard to upward hydrostatic pressure. The thickness of the floor may be determined by the engineer according to his judgment of general considerations.

(21) We will now give two examples of the old style of canal head sluice, of which there are many examples in Upper India, as well as in Madras. The design consists of a large span bridge with the interior filled up with smaller piers and vaulting. The system, now that larger vents can be adopted, is quite obsolete. Fig 17 represents the Dauleshwiram, and Fig 18 the Babarlanka Canal Head. The works are situated on either side of the Godaveri Anicut. These plans are instructive mainly as regards the foundations, which must be partly on clay.

(22) An example of a canal head work built on boulder formation viz., that of the Western Jumna Canal Head, is given in Fig 19. In this case

the sill is raised 4 feet above that of the weir sluice, the floor being built on a slope forming a rapid. On this sloping floor the piers of the work are
built, a rapid of this description discharges just as much as a vertical drop.
The object of raising the cill was to keep boulders from being carried into
the canal but owing to the fact that the weir is merely a pavement laid
with top flush with river bed there is nothing to ensure scour or to prevent
shoaling in front of the canal head and when the river is in flood if the
canal head happens to be open the noise and vibration of boulders being
rolled through canal head can be distinctly heard and felt. To prevent this
shoaling a raising of the river weir and of canal head cill seems necessary.

The vents which are only 6 feet wide are closed by wooden draw gates a
recess being formed by an upright beam built into the cill behind which the
gates work. This system of narrow spans is now quite obsolete wider spans
closed by double roller gates raised by a travelling winch being recognised
as preferable.

Plans of the weir sluices of this head work are given in Fig 12 Chap VII.
Eight of the spans farthest from the canal head have been closed with a
wall up to RL 1060 in order to concentrate scour in front of canal head
and to prevent shoaling there. Such scour would be facilitated if the crest
of the masonry weir were raised higher.
(23) Fig 20 illustrates a remarkable and novel design for canal regulating head and gates, employed in the Goulburn Canal, Australia, which is given in "Irrigation Engineering" (Wilson) As will be seen, the gate, when closed, is inclined at 45 degrees and is attached at the centre to the end of a screw rod, which moves it in a vertical direction. The other end rests loosely near the centre of pressure on four rollers carried on a shaft, which is supported by four fixed plummer blocks. The upper ends of the gate are carried on wheels which just fit in vertical grooves in the framework of the iron piers. The gate is thus forced to work vertically, the bottom end is consequently pushed downwards and outwards, eventually assuming a horizontal position when the sluice way is completely open. By this ingenious disposition regulation can be effected with a minimum of applied force, and, in addition, the water is only drawn from the surface. This arrangement, however, would not work where silt is allowed to accumulate at the foot of the gate, and consequently would not answer for head regulators in ordinary cases.

The piers, as well as the abutments, are built of cast iron, and are 10 feet apart.

(24) The screw-lifting apparatus consists of a cast-iron standard provided with a separate head, carried on an oblong vertical frame of two arms joined at the head. In the space thus formed, the female screw head fits, to which is attached a horizontal bevel wheel. This bevel wheel is worked by a vertical pinion attached to handle shaft, which is carried by a third independent arm. The hollow screw head bears upwards on the frame head and downwards on the top surface of the lower part of the frame, hence does not require a separate thrust plate.

This arrangement, in common with all others where the female screw has the motive power, is subject to the great disadvantage of the screw rod being in one piece and rising above the platform and frame, and being thus exposed to dust or rain, besides being liable to be bent or damaged. As fully explained in Chap. XIV, where several examples of screw gearing are given, this fault can be remedied by having the motive power applied to the solid, not to the hollow screw. The latter, which should be fixed to the head of a pipe, is prevented from revolving by being attached to the gate, as also to guides, and thus is forced upward or downward by the male screw, which travels inside the pipe. Thus the solid screw is effectually protected from dust and water, and nothing appears above the head of the standard.

This arrangement is obviously superior to any other, and markedly so where the lift is short, as the expensive solid steel screw need only be as long as the lift of the gate, whereas the long connection is formed by the pipe, which is better suited for compressive and torsional strain, and need not be more than an ordinary gas or water pipe having a hollow screw head fitted at one end. Ball bearings should also be fitted to the thrust collars.

The propriety of using cast-iron frames for piers and abutments of regulators in lieu of masonry is entirely one of comparative cost, which varies immensely in different countries, and so cannot be settled by any hard and fast rules.
(25) In Fig 21 we have an instructive example of recent American practice viz that of the Minidoka Canal Head in Idaho. Most irrigation works in the United States have hitherto been constructed in a large measure of timber so that the institution of permanent works of masonry is a comparatively new departure. Under these circumstances it is disappointing not to find in these latest productions no improvement over the Oriental types common to India and Egypt but on the contrary discarded forms are reproduced. The principle of modern improvements largely influencing design is the adoption of anti-friction rollers to draw gates whereby larger vents can be used than were formerly practicable which arrangement tends to economy of material as well as to the possible avoidance of expensive screw gear for manipulating the gates and also the practice of admitting surface water only.

In this work the head of water to which the superstructure is exposed is moderate being only 14 feet.

The closure of the vents is effected by a cast iron draw gate working in the grooves of a high frame similar to that used in reservoir sluices. The upper part of the frame is provided with a cast iron shield behind which the gate is drawn when lifted. This shield takes the place of the breast wall or depressed arch usual in Indian works. Above the shield closure is effected by breakers or flash boards as they are termed in America. This arrangement enables water to be drawn from the surface during high floods.

In the design the piers are 2 feet thick to spans of 3 feet a proportion of 45.
The resultant line of pressure, together with the concomitant graphical diagrams, has been drawn on the profile in Fig 21. The pier bases are subjected to a very moderate maximum pressure estimated at under $1\frac{1}{2}$ tons per square foot. In spite of this the piers are reinforced with a network of steel bars which, as well as the anchor bars let into the rock, seem rather unnecessary.

The adoption of a single lifting gate is open to the objection* that water can only be admitted at the bottom, i.e., under the gate.

The screws working the gates are operated by a worm and bevel gearing, which is attached to a hollow or female screw head, held in the standards.

* If a measuring bell is a foot below the bottom of the structure and the water level is 5 feet below the pier, then the height of the water column is 8 feet. This additional height is necessary to allow for the gate and gate frame.
above the standard The plans are derived from Irrigation Engineering (Wilson)

(27) In Fig. 23 is another example of a recent work in America viz., the Folsom Canal Head Regulator. This work consists of three spans of 16 feet, the piers being 6 feet thick or a proportion of 4 S nearly. The head is much greater than in the former example being 32 feet. In this design the depressed arch is very properly made use of its springing being 10 feet above floor. The rest of the work is built up solid for an average width of 20 feet. The area of each draw gate is 16 x 14 feet which is enormous considering the great head of water. The gates are of wood not provided with anti-friction rollers so that very exceptional arrangements have to be made to manipulate them. This is effected by the adoption of hydraulic jacks one to each gate. These jacks have plungers 14 feet in length fastened to the rear of each gate and are operated by head of water provided from a power house.

It is considered that the section which is very massive could be economised with advantage retaining existing conditions of span etc. by reducing the weight of the solid mass filling and lengthening the piers. The adoption of a U section with side breast walls filled between with any heavy material would effect great economy in masonry, without much diminishing the weight a narrower top width with a battered inner breast wall being also adopted as shown by a dotted line on the section of Fig. 21. As however in this canal in particular the prevention of salt depo it is an urgent matter it is deemed that a complete remodelling of the design allowing

![Fig 23—Head Regulator of Twin Falls Canal](image-url)
The resultant line of pressure together with the concomitant graphical diagrams, has been drawn on the profile in Fig 21. The pier bases are subjected to a very moderate maximum pressure, estimated at under \(1 \frac{1}{2}\) tons per square foot. In spite of this the piers are reinforced with a network of steel bars which, as well as the anchor bars let into the rock, seem rather unnecessary.

The adoption of a single lifting gate is open to the objection * that water can only be admitted at the bottom, *i.e.*, under the gate.

The screws working the gates are operated by a worm and bevel gearing, which is attached to a hollow or female screw head, held in the standards.

![Diagram](image_url)

Fig 23 — Folsom Canal Head

This revolves and draws the long solid screw bar to which the gate is attached up and down as may be required. When the gates are raised these fourteen solid screws will project 10 feet above their standards into the air. This objectionable arrangement is avoidable, by the simple expedient of applying the motive power to the solid rod, while the female screw head is attached to the end of a pipe fixed to the gate which pipe does not revolve, and inside which the solid screw is protected from wet or rust, nothing appearing
above the standard. The plans are derived from "Irrigation Engineering" (Wilson).

(27) In Fig. 23 is another example of a recent work in America, viz., the Folsom Canal Head Regulator. This work consists of three spans of 16 feet, the piers being 6 feet thick, or a proportion of 4 S nearly. The head is much greater than in the former example, being 32 feet. In this design the depressed arch is very properly made use of, its springing being 10 feet above floor. The rest of the work is built up solid for an average width of 20 feet. The area of each draw gate is 36 x 14 feet, which is enormous considering the great head of water. The gates are of wood, not provided with anti-friction rollers so that very exceptional arrangements have to be made to manipulate them. This is effected by the adoption of hydraulic jacks one to each gate. These jacks have plungers 14 feet in length fastened to the rear of each gate and are operated by a head of water provided from a power house.

It is considered that the section which is very massive, could be economized with advantage retaining existing conditions of span etc. by reducing the weight of the solid mass filling and lengthening the piers. The adoption of a U section with side breast walls filled between with any heavy material would effect great economy in masonry, without much diminishing the weight. A narrower top width with a battered inner breast wall being also adopted as shown by a dotted line on the section of Fig. 27. As, however, in this canal in particular, the prevention of silt deposit is an urgent matter, it is deemed that a complete remodelling of the design allowing
of water being drawn at different levels much as was done in the alternative design for the Betwa Head (Fig 10), would be more suitable. The exceptional size of the vents will also well bear reduction in view of easy manipulation of the gates by ordinary means.

(28) In both these works, viz., Figs 21 and 23, the same arrangement is adopted for the gates which slide on flat iron bars let into the face of a recess in the piers, the single or double U-shaped cast iron grooves usually adopted in modern practice in India and Egypt not being employed. The rounded cut waters also do not extend above the height of the gates, so that there is no semblance of groove above this level. This arrangement would not suit where gates are lifted at each end not at the centre, the groove being necessary to protect the lifting chains from the current.

A site plan of the Folsom Canal Head Works is given in Chap. XII.

(29) It is unfortunate that very few drawings of American canal head works are available. The pernicious modern system of substituting photographs for working drawings is responsible for this. From these photographs a good idea of the style of the work is obtained and that is all.

One of the Twin Falls Canal Head is reproduced by permission in Fig 25. It is taken from Schuyler's 'Reservoirs' p 74 a technical book of the very highest class.

From this, two main points of divergence from Indian head works is discernible. First, the head of water is very low, the gates are 11 feet in height and there is not much in any way above them. Secondly, there is no road bridge for cross communication for wheeled traffic. This, which is indispensable in a thickly populated country like India, can be
dispensed with here. The superstructure in this particular case consists solely of a wooden footbridge just sufficient to accommodate the man working the gates. These latter gates consist of fan-shaped segments.
of water being drawn at different levels much as was done in the alternative design for the Betwa Head (Fig 10), would be more suitable. The exceptional size of the vents will also well bear reduction in view of easy manipulation of the gates by ordinary means.

(28) In both these works, viz., Figs 21 and 23, the same arrangement is adopted for the gates, which is adopted in modern practice in India and Egypt not being employed. The rounded cut-waters also do not extend above the height of the gates so that there is no semblance of groove above this level. This arrangement would not suit where gates are lifted at each end, not at the centre, the groove being necessary to protect the lifting chains from the current.

A site plan of the Folsom Canal Head Works is given in Chap. XII.

(29) It is unfortunate that very few drawings of American canal head works are available. The pernicious modern system of substituting photographs for working drawings is responsible for this. From these photographs, a good idea of the style of the work is obtained and that is all.

One of the Twin Falls Canal Head is reproduced by permission in Fig 25. It is taken from Schuyler's "Reservoirs," p 74, a technical book of the very highest class.

From this two main points of divergence from Indian head works is discernible. First, the head of water is very low, the gates are 11 feet in height, and there is not much in any way above them. Secondly, there is no road bridge for cross communication for wheeled traffic. This, which is indispensable in a thickly populated country like India, can be
dispensed with here. The superstructure in this particular case consists solely of a wooden footbridge just sufficient to accommodate the men working the gates. These latter gates consist of fan-shaped
pivot in the concrete piers at some distance back. This arrangement admits of easy manipulation.

Each gate has a fixed lifting apparatus, which probably consists of a drum revolved by gear which winds up a chain attached to the bottom of the segment. Segmental gates of similar design were used in the Grand Barrage near Cairo. On the remodelling of this work they were all removed, and double drop gates in grooves with roller bearings, raised by a travelling winch, were substituted. As regards Oriental irrigation works, this style of water gate may be considered to be quite obsolete, the reason being that it has the fatal defect of only admitting water at the bottom. When the gate is revolved the aperture below acts as a scouring sluice, the water entering under pressure as in a submerged orifice, and thus must inevitably carry silt and sand into the canal. This action in some cases, where levels admit of it, as in the Folsom Canal Head, is ameliorated by the adoption of under-floor sand traps. But undoubtedly the better plan is to make the water enter over the tops of movable gate tiles or flash boards. Where there is not much silt the Australian regulating gate (Fig 20) would probably give good results and be just as easy to work by one man as the segmental gate. These gates are 12 feet wide.

The regulators on the new CPR Canal at Calgary, Alberta (Figs 26 and 26a), are fitted with wooden balance lever gates on the same principle. These are centred very far back, so that the power to lift them is very small. They have a very clumsy appearance.

(30) In Upper Burma, south of Mandalay, an extensive system of irrigation from the Zawgyee and another river, or rather hill torrent, has

![Zawgyee Canal Head (Burma)](image)

been in operation for 900 years. These canals have recently been entirely remodelled on modern lines, and are now provided with head regulators, escapes or spillways, falls, and all the various works incidental to proper regulation. The head work of the Zawgyee Canal is illustrated in the

* The same design copied from a French model was once tried in the Punjab on a canal of 500 cusecs capacity, but owing to the fact that water could only be admitted under the gates with great velocity, drawing in excess of silt, it was found advisable to scrap the arrangement and to substitute the ordinary style of sliding gate. — Fp
photograph in Fig 27. It consists apparently of small vents some 6 feet in width, closed by single wooden draw gates operated by separate fixed rack gear lifting apparatus. Spare grooves are provided in front to allow of closure by baulks or flash boards, whenever necessary.

Although silt deposit is not troublesome in these canals, still double draw gates would have been a better arrangement and more in accordance with the best modern practice.

The weir was an old Burmese work of loose stone of type C, held in place by rows of small stakes. These works required constant annual
repairs and even renewal; they are now probably sheathed with a covering of rubble masonry, or slabs on edge, and so rendered permanent. This treatment was proposed when the author was in charge of the Kyankse Irrigation Division in 1893, although at that time the remodelling project was but in embryo. This site is most picturesque; the engineer's inspection house close by used, however, to be jocularly termed a "promotion bungalow," on account of the extreme unhealthiness of the locality. The trestle work in front of the regulator prevents the entry of logs or detritus—it hides the weir crest from view.

(31) In Fig. 28 is a photograph of the Tennyetkon Canal Skew Head in Burma. This small work is situated above a crib weir, which has been

![Site Plan, Tennyetkon Crib Weir](image)

illustrated in Fig. 19, Chap. VI. The head work is built high to admit of the draw gates being hauled up clear of the flood line, as, being an intermittent stream, its full flood depth has occasionally to be passed down. 28a is the site plan.
Fig. 29 is a photographic view of the Calgary Canal Head on the Bow River near Calgary, Alberta, Canada.
CHAPTER IX

CANAL FALLS

(1) When the slope of the ground surface exceeds the bed grade of a canal, vertical falls have necessarily to be constructed.

In many cases these drops in the bed are of frequent occurrence, and thus form a by no means unconsiderable item in the cost of the whole work.

A hundred years ago, when the first great irrigation works in India, such as the Jumna Canals, were constructed, hydraulic science was in a less advanced state than at present and successful precedent for guidance in design hardly existed. On these canals no masonry falls were built at first, nor until erosion of canal bed rendered such construction necessary. During the period 1840-50 the drop walls of falls on the Ganges Canal were designed on the profile of an ogive curve. The object sought to be attained was that of diverting the falling current smoothly down the descent, and by this means obviating any direct vertical impact in the floor. The masonry of these falls, however, happened to be generally of poor material, and it was severely damaged, especially where standing waves formed upon the floor, and as quick setting cement was unknown in India in those day's repairs were ineffectual. On the Barri Doah Canal, "rapids," or falls with descents sloped at 1 in 10, or 1 in 15, were successfully adopted, but elsewhere vertical drop falls with cisterns, or water cushions below, came more generally into favour.

Up to a comparatively recent date the crests of the drop walls of canal falls were built raised above the canal bed level of the upper reach. This effected a vertical contraction of the area of the waterway at the fall itself, proportionate to the increased velocity of the current, and thus the velocity of the overfall was restrained to that admissible in the earthen channel above, that is to say, the velocity of approach was restrained to that of the supply channel.

For example, supposing the water in the upper reach to be 6 feet deep, with a mean velocity of 3 feet per second, the mean discharge per unit width of channel would be 18 cubic feet per second.

If the crest of the weir were built level with the canal bed up stream, the length of the crest being that of the average width of the channel, then the depth of film passing over will be such as would suffice to give a discharge of 18 cubic feet per second.

Now, the formula for discharge over a weir (free overfall) usually adopted is $3.33d^{\frac{3}{2}}$; if this be equated with 18 cubic feet, or else the result obtained from tables, the value of d will be found to be 3 feet.

* The mean velocity would increase as the current approached the fall, from 3 feet seconds to $\frac{15}{3} = 6$ feet seconds, and the acceleration of velocity in a decreasing depth of
CHAPTER IX—CANAL FALLS

If the crest of the drop wall were raised 3 feet above the canal bed a depth of film of 3 feet would, as we have seen exactly pass the discharge. Hence the surface slope of the water of the canal up stream would in no way be affected, nor the mean velocity of the channel interfered with. Similar effect can also be produced by lateral contraction but such contraction must increase from surface downwards to bed level. This simple matter of raising the crest of the canal weir would answer perfectly were the water level in the canal constant. Such however, is not the case.

This difficulty of varying supply is practically overcome by the device of so called notch falls which have proved successful to such a degree as to be now generally adopted in recently constructed Indian canals.

In notch falls the crest of the drop wall is raised up to Full Supply Level, and the part thus raised above the canal bed grade is pierced by a series of trapezoidal openings termed notches through which the water passes. The reduction in sectional area is thus effected by graduated lateral not vertical, contraction as the base of the notch is at the level of the canal bed up stream. The subject of the discharge of canal notch falls has already been noticed in par (21) Chap V.

(2) It now remains to undertake the practical design of the works in detail.

In Fig 1 is given an elevation, a plan and a section of a notch opening said to be used in the Chenab Canal while in Figs 1a and 1b are similar views of a notch fall actually constructed on the same canal. These drawings are derived from The Irrigation Works of India. The elaboration of detail shown in the diagrams in Fig 1 does not seem to be carried out in practice in Figs 1a and 1b in the latter case the profile of the notch sides on plan is simply a segment of a circle.

The plan (Fig 1) would not answer practically on account of the space required between each notch opening to admit of the great splay given to the sides of the inner face. Such elaboration would undoubtedly conduct to raising the value of the coefficient of discharge but considering that the trapezoidal notch is after all exactly suitable to the discharge at two levels only and the coefficient adopted is but approximate such extreme refinement in the design of the outline appears out of place.

(3) The first point to be determined is the total top and bottom width required for the notches. This will naturally indicate the length to be given to the crest of the fall between the abutments and the number of notches it is advisable to adopt. Water would be able to scour the bed up stream for miles. This is what happened in the Ganges Canal but it was not the fault of the ogee drop. It would have happened with a vertical drop fall—Ed.

* The diagrams are not representative of orthodox Punjab canal practice. See I ! Notes at end of this chapter. Figs 1a and 1b represent the simpler types at p.t. Distributaries or Rajbaghs but Fig 1 does not represent the best modern types—Ed.

† Having determined the total top width and bottom width of the notches the size of notches may be decided in the light of convenience and the total width of fall.
(4) The thickness of notch piers at notch cill level should be two thirds the water depth.

The top length of the piers should not, for purposes of stability, be made less than their thickness, particularly in cases where the piers are carried higher than F S L, so that the fall can be crossed by planks laid on their summits, clear of the water.

(5) A practical example of the method of calculating the number and dimensions of notches will now be given.

The design in Fig 2 is based on an assumed canal discharge of 2,500 second feet with a mean velocity of 3 feet per second, and a full supply depth of 8 feet (free overfall). To produce these conditions the grade of the canal bed will be about 18 per 1,000 feet.

The area of the waterway will be \(Q \) or \(\frac{2,500}{3} = 833 \) square feet.

The width of the canal bed, with side slopes one to one will also be

\[
\frac{A}{d} - d = \frac{833}{8} - 8 = 96 \text{ feet}
\]

The value of \(R \) is

\[
\frac{A}{WP} = \frac{A}{b + 2d \sqrt{2}} = \frac{833}{96 + 22} = 7.06 \text{ nearly}
\]

Now with regard to the number of notches. The overfall being free, and the assumed velocity of approach above the average, it can be safely assumed that the number will give the top and bottom width of each notch. The spacing of the notches will be determined by the top width allotted to the notch piers in the light of convenience and structural appearance.
that the top width of each notch will not exceed $\frac{3}{4}d$ or 6 feet. We have seen that the length of the pier crests should not be less than half the depth.
of water, or 4 feet, and as the piers are intended to carry a light bridge, this length might well be increased to 5 feet.

The spacing of each notch will thus be 11 feet. This will allow of eight notches, or a length of 88 feet between abutments, which is 8 feet less than the bed width of the canal. As, however, the abutments will be designed with battering faces, the actual length at base of the notch piers has been made 85 feet.

(6) Having tentatively decided on the number of notches, the discharge which each has to accommodate will be \(\frac{2500}{8} = 312 \) second-feet nearly.

If reference is made to Table II, Chap. V, it will be seen that the discharge per foot run with \(d = 8 \) and \(V = 3 \) less 10 per cent, is 69.44 cubic feet per second. The required half width of each notch opening \((b) \) will then be \(\frac{312}{69.44} = 4.49 \) feet. This is the value of the half width \((b) \), whatever may be the slope of the sides of the notch opening.

(7) The half width of the whole opening having been thus ascertained, we have now to fix the same for another lower depth of water.

If a notch were designed to discharge precisely the proper amount at every change of level in the surface of the canal water in the upper reach, it would take an ovoidal outline similar to the profile of an egg with both ends truncated the thick end uppermost. As however, it has been proved that a trapezoidal shaped opening correctly calculated to discharge the full supply and that due to one lower depth will answer all practical needs, this refinement need not be entertained.

Orifices of this ovoidal section could easily be provided, were cast-iron piers adopted.

(8) To revert to the lower depth, it is found convenient to place this level \((d_2) \) below what is usually the lower supply in the canal \((d_1) \).

In Upper India most canals run at two levels, the higher when water is most in demand, i.e., in the hot season, when the rivers rise owing to the melting of the snows in the Himalayas, and again a lower supply in the winter months, and this double supply level is what obtains in most canals.

Owing however, to a variety of causes the fluctuations of level are often considerable, so that it is advisable to adopt a value for \(d_2 \) below that of the lower supply level \(d_1 \).

This value should be a little over half the lower depth or \(\frac{d_1}{2} \), or under half the full depth, i.e., \(\frac{d}{2} \).

In the case we are considering, the lower supply level \(d_1 \) is assumed at 5 feet in depth, but the value of \(d_2 \) will be taken as 3 feet.
(9) It now remains to calculate the discharge of the canal at this depth of 3 feet.

In this case \(A = 99 \times 3 = 297 \) square feet, \(R = \frac{A}{WP} = \frac{297}{104.4} = 2.84 \),

\(S \) is given as \(\cdot18 \) per 1,000, or \(\frac{1}{5.555} \).

We have now to estimate the mean velocity from the formula \(1000 \sqrt{RS} = V \).

Omitting \(c \), the expression will become

\[
V = \sqrt{5.84 \times \frac{10,000}{5.555}} = \sqrt{\frac{5.540}{1.111}} = \sqrt{\frac{5}{11}} = 2.26.
\]

If \(S \) per 1,000 be considered, the equation will be \(V = \sqrt{2.84 \times 10 \times 0.18 = \sqrt{\frac{5}{11}} = 2.26} \) (note par. (28), Chap. V).

The value of the coefficient \(c \), suitable to one of \(R = 2.84 \) and of \(S = 0.18 \) per 1,000, obtained from Table XII, Part IV, of the "Hydraulic Manual," is \(.7 \) nearly. The actual mean velocity will then be the previously obtained value of \(2.26 \times .7 = 1.582 \) feet per second, and the discharge of the canal at the lower depth of 3 feet will be \(AV \), or \(297 \times 1.582 = 475.2 \) second-feet.

(10) Again dividing by the number of notches, the discharge through each must be \(\frac{475.2}{8} = 59.4 \) second-feet. The half width \(b_2 \) is obtained, as previously, by reference to Table II, Chap. V. In this we find that the discharge per foot run, less 10 per cent with \(d = 3 \) and \(V = 1\frac{1}{4} \), is 15,853 second-feet, \(b_2 \) will therefore be \(\frac{59.4}{15.85} = 3.75 \) feet.

(11) Having thus obtained the widths of the notch openings at two known levels, viz., at \(\frac{d}{2} \) and \(\frac{d_2}{2} \), we are now in a position to calculate the top and bottom widths.

The vertical distance apart of the two widths \(b \) and \(b_2 \), are \(\frac{d}{2} - \frac{d_2}{2} \). The ratio of widening will then be \(\frac{b - b_2}{d - d_2} \). Let these horizontal and vertical differences be designated \(m \) and \(n \). Then the expression becomes \(\frac{m}{n} \). Now the top of the opening is distant \(\frac{d}{2} \) above the position of \(b \), and the base \(\frac{d_2}{2} \) below that of \(b_2 \), consequently the top width will be \(\left(\frac{2}{d} \times \frac{m}{n} \right) + b \), or \((b + d) \left(\frac{m}{n} \right) \). Similarly the base width will be \((b_2 - d_2) \left(\frac{m}{n} \right) \).

The value of \(m \) is \(4.49 - 3.75 = .74 \).

That of \(n \) is \(8 \times 3 = 50 \).
DESIGN OF IRRIGATION WORKS

Therefore \(\frac{m}{n} = \frac{24}{5} = 15 \), and transposing these values in the expressions (1) and (2) we have

\[\text{top width} = 4.49 + (8 \times 15) = 569 \text{ feet and} \]
\[\text{base } = 3.75 - (3 \times 15) = 33 \text{ feet} \]

The average of both widths should naturally equal \(b \), i.e., \(\frac{8.99}{2} = 4.49 \)

The size of the notch is made 5 feet 9 inches at top and 3 feet 3 inches at base. With 11 feet centres, the top length of the piers will be 11 - 5 feet 9 inches = 5 feet 3 inches

(12) Supposing the fall to be not free, but submerged, i.e., the drop in the canal surface to be 2 feet only

In such case, with full supply, the discharge (less 10 per cent), with \(d = 8 \), \(V = 3 \) and \(H = 2 \), as in Table IV, Series IV, is found to be 450 second-feet per foot run, the value of \(b \) will then be \(\frac{312}{45} = 7 \) 0 feet instead of the 4.49 in the free overfall. The lower depth \(d_2 \) will be submerged 1 foot, consequently its discharge by Table IV, Series II, deducting 10 per cent will be 10.6 and \(b_2 = \frac{59.4}{10.6} = 5.6 \)

Then \(m = 7.0 - 5.6 = 1.4 \)

and \(n \) as before = 5.0

Whence \(\frac{m}{n} = \frac{1.4}{5} = 28 \) and by (1) par (II)

the top width = \(7 + (8 \times 28) = 924 \)

by (2) the base , \(= 5.6 - (3 \times 28) = 4.76 \)

\[\text{Total} \quad 14.00 \quad \text{Mean,} \quad 7.0 = b \]

With these dimensions, the yaw of the opening will be noticeably greater, and the spacing of the centres of the notches will have to be made 13.4 feet, the weir crest being lengthened accordingly

(17) In Fig 2 the weir wall is of the "hybrid" type of section (vide par (63) Chap II). The base being \(\frac{H + d}{\rho} \) or, in Fig 2, \(\frac{3}{4} \times 16 = 7.1 \) feet (made 7 1/2 feet), in Fig 3, \(4 \times 11 = 5 \) feet (made 5 feet 6 inches).

The top width is made 5 25 feet in Fig 2. The extra width is required for the accommodation of the notch piers. The thickness of notch piers is 4.5 feet.*

The length of the floor or apron is 2 \((H + d) \), according to the rule given in Chap IV, par (20).

* As the Notch Piers have to sustain the pressure of water 8 feet deep flowing on either side of them with high velocity, their base thickness should not be less than \(\frac{2}{3} \times 8 = \) say 5.5 feet - Ed.
The thickness of the floor is made $\sqrt{H + d}$ considered sufficient with a clay foundation.

With regard to the width of the floor it is made somewhat greater than the canal bed width.

The floor is terminated by a shallow curtain wall beyond which it is protected by pitching.

(18) The abutments as well as the wings are all battered at π in 10.

The abutments are continued up stream for a short distance parallel to the axis of the work forming the commencements of a pair of level crested splay walls with end returns.

These not only form an excellent guide to the current on its contraction at the fall but with the assistance of the level crested portion of the dog legged down stream wings afford a wide level connecting bank and an approach to the bridgeway across the fall.

(19) The down stream wings on plan are of the so called dog legged pattern having a re-entering angle. They start splying outwards from the weir wall until the floor half widths are reached. This portion is level crested. When the floor widening is thus effected the direction of the base of the wings runs parallel to the axis of the work. In Fig. 2 the first portion has a sloping crest of 2 to 1 corresponding with the drop in the canal bank when this is overcome it continues in the same direction at the level of the down stream canal bank to the termination of the floor when another splayed return forms a junction with the canal bank side slopes.

(21) The sections of the wings are strictly in accordance with the rules formulated in Chap. I. The sections at AD in Fig. 2 of the up stream wings are of walls under partial earth pressure. The earth pressure exists only as far as the up stream canal bed below this level no additional external force is applied so that the base at the upper canal level is made $4H \pi$ wide and below that point the back is carried down vertical but the face continues battered as above ground in addition a footing is provided near the base the π in 10 batter having at this depth to be thus supplemented to ensure the line of pressure falling within the base.

Thus important matter which is so often neglected has received considerable attention in Chap. I (side pars (43)–(53)).

(22) In Fig. 2 arrangements are shown for a light bridge across the fall. In this the notch piers are utilised to support square pillars of brick in cement which carry an I beam. A second longitudinal is bolted to iron columns which are founded on masonry blocks situated at the general foundation level and these two are spanned by cross joists projecting well beyond the longitudinal beams which in turn are covered with planking. Parapet rail standards are bolted to the projecting part of the joists and thus a 13 feet wide roadway is provided.
The level of the platform is a little above that of the banks on either side, and the connection can be formed by a short slope.

An arrangement of this kind is equally effective and vastly more economical than the heavy masonry over bridges which are such a common feature in old canal falls and which are perpetuated to the present day, as will be noticed later with reference to the Jamrao Canal Fall in Fig 5.

(23) We now come to an altogether different type of construction for a fall which is illustrated in Fig 4. The principle of the construction is to effect economy in the flank defences of the work by causing the earth to support the protective walls instead of vice versa so that masonry pitched slopes take the place of the down stream flank retaining walls. Up stream there are no water wings whatever. Their place is taken by a horizontal and vertical prolongation of the weir wall forming single direct return flank walls on each side of the weir. The up stream canal side slopes running right up to them.

Down stream the width of the floor is terminated on each side by a dwarf flank wall 3 feet high, which runs out with level crest to the end of the floor,
whence the crest dips down at a slope of 2 to 1 to the down stream canal bed level.

Above this dwarf wall a masonry slope rests on the side of the earth cutting at a slope of 1 to 1, and is carried on thus to the toe of the dwarf wall where it merges with the dry pitched canal slopes.

The raised flank continuations of the weir wall have their foundations stepped up.

These walls at their commencement are subjected to lateral water as well as earth pressure and so the section gradually diminishes in width till at their ends the earth pressure from the up stream side becomes very much reduced.
This is explained by the half elevations and plans and the cross sections on AD and BB

(24) Excluding the weir wall and the visible portion of the floor the quantities of masonry in the flank defences are as follows —

Fig 4

2 210 cubic feet

Where falls are narrow deep and numerous this type of design is eminently suitable not only on canals but in reservoirs where canal escapes distributary falls etc. The author has constructed several across rivers. One of these is illustrated in Fig 24 Chap I and described in par (69) of the same chapter. A photograph of it is given as Fig 13 at end of this chapter.

(25) Fig 5 is an example of a recently constructed canal fall on the Jamrao Canal and is instructive as showing how a too close adherence to obsolete types results in a quite considerable waste of money.

The plans are taken from the Min Pro Inst C E Vol CLVII p 278.

The drop in the water surface is 6 feet whereas that in the canal bed is 7 feet. The depth of full supply up stream being 7½ feet while that downstream is 8½ feet.

(26) A cistern no less than 6 feet in depth is provided for a drop of nearly the same amount. This is excessive. The formula is:

\[x = H + \frac{\sqrt{H}}{4} \sqrt{d} \]

(see Molesworth's Pocket Book Water Cushion for Weirs) in which

- \(H \) = depth of water up stream of fall
- \(d \) = fall of water surface
- \(x \) = depth of floor of cistern below water surface downstream. In our case

in point \(x = H + \frac{\sqrt{H}}{d} \) \(d = 7.5 \) \(+ \frac{\sqrt{7.5}}{\sqrt{6}} = 12.3 \) feet. Whence depth of cistern: \(12.3 - 8.5 = 3.8 \) feet only.

(27) A second point in the design which may be open to objection is the combination of an overbridge with the fall. Except for reasons of economy there can be no possible objection in combining these two works. A road crossing for traffic purposes is not necessarily required at the exact site of a fall and a structure to serve both purposes may very possibly be located at a site which is not the best for either.

From inspection of the drawing it is questionable whether the combination is productive of economy in the present case.

The bridge consists of wide spans of 24 feet. The foundations of the pier have to be carried right down to the base of that of the cistern to a depth of 18½ feet below canal bed level. Were the bridge built at a separate work, it might consist of moderate spans of say 15 feet with piers 8 feet high only resting on a floor platform which need not be more than 3½ feet thick, enclosed between two lines of sheet piles. The presence of the bridge piers on its crest necessitates the lengthening of the weir.

Another point involving a further unnecessary lengthening of the weir is the excessive length of the notch piers which measure 6 feet long at the crest whereas 4½ feet or 5 feet would have been ample. As there are ten
CHAPTER IX—CANAL FALLS

notches this adds another 15 feet to the length of the weir wall making it longer than is necessary.

(28) The analysis of the section (Fig 5) with regard to l the length of enforced creep and to t the thickness of the floor is as follows — The maximum head occurs when the canal is nearly empty at which time only a small depth of water is passing down just sufficient to cause hydrostatic pressure but which will also fill the cistern. The head will therefore equal the drop t e 7 feet. The coefficient being 15 the value of l will be $7 \times 15 = 105$ feet. The actual length of creep is about 110 feet so it is amply provided for in this respect.

(30) Facility of method combined with certainty and precision are inestimably aids to successful design and the author's endeavour throughout this work is to smooth the rough paths and render the designing of works in easy matter.

The question often arises in designing canal works as to whether it is more economical to provide one deep fall or several small ones. As regards cost of masonry alone ignoring that of the earthwork in the cutting, the advantage does not lie decidedly either way, but the wider the fall the greater will be the advantage if any of the deeper fall the reason being that the cost of the flank defences bears a greater portion to the whole in a narrow than in a wide work. In a long weir the main expense is in the weir wall and floor. So ignoring the flank defences the sectional areas of the weir wall and floor alone for different depths of fall are given below. In every case the value of d or depth of flume is taken as 5 feet $H = d$ therefore will equal $H + 5$ in every case —

<table>
<thead>
<tr>
<th>Heights of Weir and Floor</th>
<th>Feet</th>
<th>Feet</th>
<th>Feet</th>
<th>Feet</th>
<th>Feet</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>71/2</td>
<td>10</td>
<td>1</td>
<td>101</td>
<td>155</td>
</tr>
<tr>
<td>Sectional areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weir</td>
<td>19</td>
<td>45</td>
<td>53</td>
<td>72</td>
<td>101</td>
<td>155</td>
</tr>
<tr>
<td>Floor</td>
<td>64</td>
<td>88</td>
<td>11</td>
<td>14</td>
<td>180</td>
<td>230</td>
</tr>
<tr>
<td>Totals sup ft</td>
<td>83</td>
<td>133</td>
<td>10</td>
<td>79</td>
<td>481</td>
<td></td>
</tr>
</tbody>
</table>

Two 5 feet deep falls
One 10
Three 5
One 15
One 20

Two 5 feet deep falls
One 15
One 20

- 66
- 241
- 340
- 403
From the above it will be seen that the difference in quantities of weir plus floor is much the same in the case of several small falls or of one larger one the advantage generally lying with the smaller falls.

The comparative areas of the flank walls will throw the balance further in favour of the smaller falls.

In estimating the sectional areas of the weirs the base width is taken as that of the Hybrid section viz $\frac{H + d}{\rho}$ not $\frac{H + d}{\sqrt{\rho}}$ the thickness of the floor as $\sqrt{H + d}$ and the length $2(H + d)$.

(31) In the dry zone of Western Canada in the Province of Alberta large canal systems are in process of formation the principal of which is the Calgary Canal undertaken by that enterprising corporation the Canadian Pacific Railway. This canal a short description of which is given in Chap \(\text{VIII} \) will when fully developed be by far the largest on the American continent it is thus fit that the premier railway company of the whole world should also lead the record in irrigation enterprise The author has been privileged to obtain the blue prints of some of the principal works and it will be interesting and instructive to reproduce some plans particularly with regard to engineers in countries possessing timber forests in abundance where irrigation is practised. In India itself timber is scarce and expensive but in Burma which has an extensive dry zone excellent timber hard wood as well as teak is available at moderate prices.

The first illustration in Fig 7 is of a 10 feet drop situated 15,000 feet from the canal head. The bed width here is 44 feet side slopes 2 to 1 the average width of the water section will therefore be 64 feet with a full supply depth of 10 feet.

\[\text{Fig 7a — 10 Foot Fall on Calgary Canal, Alberta} \]
In these falls the crest is not raised as is commonly the practice wherever notch falls are not adopted. But on the contrary it is lowered 3 feet below the up stream canal bed grade; the approach being in the nature of a rapid the crest itself is contracted to a width of 17 feet.

The width of the floor below the drop 43 feet is nearly equal to the bed width. A water cushion is provided 4 feet 8 inches deep.

By the arrangement above sketched, the overfall is concentrated in a narrow width and the velocity of approach largely augmented.

The scouring action of the falling water must therefore be accentuated much above what it would have been the usual wide raised crest adopted.

Modern practice in canal falls is in favour of notch falls in which type the current instead of being concentrated in one powerful volume is split up into several jets independent of each other. However, with a water section having an exceptionally low ratio of \(\frac{\text{base}}{\text{depth}} \) as 4:4 together with a high velocity of approach of 3.2 feet per second the crest width of the fall should be greater than the bed width of the canal say more nearly equal to the average width of the water section which is 64 feet. A photo of this work showing the cross bracing is given in Fig 7a.

(32) The difficulty inherent in the case of wide canal works built of a so extremely unsuitable material as light pine wood is that the post and plank wing walls which support the earthen sides above and below the fall require strutting across for mutual support. In the small Western American canals which are often not much larger than Indian distributaries this can easily be effected. When however the same design is copied on a larger scale the cross ties have to be made of built beams and the expense is considerable. This must be one reason why the wide portion is limited to the part below the drop wall.

In this design, the revetment walls of the water cushion well or pit are not shown as cross braced but this had eventually to be done as the pressure of 19 feet of earth would otherwise have soon overcome the slight resistance offered by the upright poles 5 feet apart.

This difficulty in connection with wooden revetment walls is easily solved by simply stepping outside the trammels of precedent which seems to have such a hold on some engineers not only here but in India that is by abandoning the vertical walled lock, or box style of construction of falls for an open one and of substituting the much more reasonable system of allowing the earth to stand on a slope instead of being held up vertically. These slopes with the assistance of a little overlay of marrap will stand permanently at a much steeper inclination than the angle of repose of the material.

This method of construction which is the same as that exemplified in Fig 4 will be found much cheaper; the saving in woodwork being very considerable as a set-off against which is the cost of stone filling and of pitching banks and of a puddled clay wall in rear of the main cross drop wall which latter with wooden structures is deemed an essential feature. This canal has the great advantage of a subsoil consisting of glacial detritus in which large
quantities of stones and gravel are mixed up with the clay. Safeguarded from erosion by light crib work, stone forms an excellent and effective protection to earthen beds, or banks against water scour.

(33) An alternative design on these lines is given in Fig 8. The width of crest adopted is 60 feet, which dimension, if anything, errs in excess. The up stream slopes are steepened from 2 to 1 to $1\frac{1}{2}$ to 1, at which they will easily stand with the possible addition of a 3-inch layer of loose stone. The down stream side slopes are made such that they will intersect the wing crests at the same point as the up stream slopes, they will thus stand at $\frac{87}{10}$ to 1. It is a little steeper than 1 to 1. Considering that revetted slopes stand well at $\frac{1}{2}$ to 1, this inclination is by no means impracticable. This slope is revetted with stone 2$\frac{1}{2}$ feet thick at the base, tapering to 1 foot at the crest and the pitching is continued up to the end of the down-stream floor. From this point down, it will widen out to the normal 2 to 1. The drop wall itself consists simply of a single wooden double-planked core wall.

The planks are placed inside the posts, which are spaced 6 feet apart. Another row of posts or piles is placed 15 feet in rear of the face wall, connected to it by sills at the top. No other cross connection is permitted as otherwise leakage through the puddle wall, contained between the rows of posts would be encouraged, and the proper consolidation of the clay interfered with. With regard to the wings, both sides are planked, enclosing the puddle core. This latter will be carried down in a trench to a depth of 2 feet below the top of the sheet piling which extends all along below floor level, stepping up in the wings. The planking is double 3 inch, except in the rear of the wings where it is double 2-inch.

The water cushion is omitted. The greatest strain on the floor will be produced if 2 or 3 feet in depth were let down with the channel below empty, which eventuality is amply provided against by the cribbed riprap or filling. The floor is composed of 4$\frac{1}{2}$ feet of loose stone or rock, partly covered in by 3 inch planks spiked or screwed down to walings, which in turn are spiked sideways to the piles. These latter are spaced in 6 feet intervals in either sense.

The walings are not secured on top of the posts as sills, which is generally the best arrangement, but to the sides in order that they should form easy connection with the outside piles or posts of the drop wall.

The last two rows of piles are raised 4 feet above the floor, to form a stop wall. This will be filled up with loose rock, so as to allow free percolation, the stop wall has the effect of retaining a greater depth of water over the floor than is below it, and has been found to work well in practice. The revetted side slopes are protected by planking spiked to walings, connecting the inner row of piles in the pit with a further row driven into the slope at a higher level. This protection is only for a short distance, within the range of the falling water.

Considering that canal works constructed of so perishable a material as soft wood can only be temporary, it is essential that they should be as economical as is consistent with safety. The amount of material in Fig 7
(44 feet wide) is, piling 4,070 lineal feet, woodwork generally, 116,756 feet (board measure) (Board measure is cubic feet multiplied by 12)

In Fig 8, with a 60 feet width of crest the corresponding quantities are piling 1,380, woodwork generally 46,400 B V, plus stone filling, rip-
rap and puddle Two drops of 5 feet would probably be cheaper than one of 10 feet and certainly much safer The notches it may be added are wooden frames covered with bent inch boarding caulked the hollow filled up with sand or small stones and the frame bolted down to the upper floor crest of the fall

The cost of the stonework cannot be estimated it will however not nearly equal that of the woodwork saved which costs $47 per 1000 feet B M

(34) Another fall on this canal is exhibited in Figs 9 and 9a of an 11 feet drop in a secondary canal which has a bed width of 18 feet

This consists like the last of a narrow rapid followed by a laterally restricted fall but exaggerated It has the peculiarity of a kind of pen stock or pit at the head of the rapid the object of which is to hold up the water level and so limit the velocity of approach

It is considered that this design would be improved if it consisted of two distinct falls of 51/2 feet on the same principles as Fig 8

This has been worked out in Fig 10

The quantities of woodwork are as follows —

<table>
<thead>
<tr>
<th>Piles</th>
<th>Foot Local</th>
<th>Woodwork</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 9</td>
<td>1 620</td>
<td>54 160</td>
<td>11 ft</td>
</tr>
<tr>
<td>Fig 10</td>
<td>(doubled) 1 200</td>
<td>15 400</td>
<td>two of 51/2 ft</td>
</tr>
</tbody>
</table>

The puddle mentioned need not be brick clay but any soil that would be

which is amply secured by the plank sheathing

(35) Nature having provided earth and stones close to hand it is desirable that their qualities should be utilised to the utmost with a saving of the perishable wood When permanent works of masonry are substituted for these frail and temporary structures of soft wood and tar paper the stone used in the filling and revetted slopes will be the only material remaining to be again made use of Engineers accustomed to work in wood do not take kindly to masonry structures This was particularly noticeable in Burma where the old wood and mud Engineers of the lower Province before the expansion took place had a holy horror of bricks and mortar the reason is not far to seek Timber structures are quickly and easily put up and require little supervision whereas in masonry and concrete work the arrangements for and collection of mortar stone brick and cement give a great deal of trouble and require careful and thorough supervision the responsibility therefore is much greater

In the States the idea has gained ground that if a structure be of reinforced concrete it must be suitable in point of cost as well as efficiency This is by no means the case as has been proved in several instances taken up in
this work. To copy wooden structures in reinforced concrete will generally be found on analysis to be very poor engineering.

The more modern examples of the great irrigation works in India and
Egypt afford excellent models of suitable construction, not, however, to be blindly copied, but followed with a critical eye to possible defects, and subject to the modification rendered necessary in a country where labour conditions are so vastly different.

(36) Through the courtesy of Mr J S Dennis, the able head of the Irrigation Administration at Calgary, we are enabled to produce (in Fig 11) the plan in reinforced concrete of a combined regulator and fall which is on secondary canal C (see map) in Chap. VIII, Fig 2. The drop is 5½ feet. The fall is divided up into 7 bays of 4 feet by piers, which continue over the inclined drop wall on to the lower floor.

It is presumed that the head to which this work is liable is that acting when 6 feet of water is upheld by baulks let into the pier grooves the channel below being empty. If it were not for this fact, the continuation of the piers so as to form buttresses to the thin drop wall would not be necessary. With the provision of the rear sheet piling and an impervious upper floor, the drop wall practically consists of the whole mass of enclosed earth and concrete between the sheet piling and its face which thickness is much in excess of requirement. Under these circumstances, if the case were that of an ordinary fall without regulation, the cheapest construction would undoubtedly be to make the actual drop wall thicker and to do away altogether with the rear sheet piling and the rear floor, which then become superfluous.

If on the other hand the existing arrangement of the buttress piers is maintained, the whole of the floor in rear of the pier noses marked 1 together with the sheet piling, is clearly superfluous. The upper wing walls would then take off at the end of the shortened abutments i.e. at 1. The drop wall itself would not require any thickening beyond its present dimension of
18 inches In ordinary cases, no upper floor is provided in rear of the weir wall beyond some riprap, and there is no reason why this arrangement should be departed from unless the foundation is pure sand, which is not the case here.

(37) A fall practically consists solely of the drop wall and the floor, the side wings not being an absolutely essential feature, as they can be left out, pitched slopes being substituted. The drop wall is simply a lining to the
step in the earthen bed a retaining wall in fact and if built up against the original clay or connected therewith with a puddle backing it should not be subject to hydrostatic pressure. Further its weight pressing on the earthen foundation forms a watertight connection below. The floor in like manner forms a watertight connection with the earth in the lower bed and with the drop wall. Consequently except when the soil is porous as sand lines of sheet piling in rear of the drop wall or below the foundation of the lower floor are not at all necessary and in fact never are employed in any Indian works of this character.

A good design in a light material as timber may be quite unsuitable when a heavier material is employed. The plan under consideration adheres it is contended too closely to precedents of timber construction. It should be borne in mind that in hydraulic works sheer weight is always a desideratum.

In reinforced concrete work weight is reduced as much as possible to save expense and it will often be found that it is cheaper to employ the plain concrete of larger dimensions than reinforced concrete.

It is considered that this floor should be made at least 3 feet thick the lower half being of closely set riprap covered with 18 inches of plain cement concrete the length also to be increased by half as much again by heavy riprap the wings remaining the same.

The remarks regarding the superfluous of the sheet piling do not apply to that underneath the up stream wings. In most falls the foundation of these wings is carried down to the lower foundation level and this can be most economically effected by sheeting piles forming the lower 5 feet. This line of sheeting should be carried under the abutments and connect up with the drop wall curtain. The drop wall might be made vertical without disadvantage with a battered face.

The piling shown at the termination of the down stream floor is a useful though not an indispensable adjunct provided this floor were lengthened in concrete to about the same extent as the upper floor is recommended to be shortened. The suggested alterations amount in fact to a redistribution of much the same material.

The panel counterfort retaining walls are an excellent feature and effect considerable economy in section. It is here that reinforced concrete can it is considered be most suitably employed not in the drop wall or floor.

(38) A section of a canal escape fall ladder without notches which is worthy of attention is that of the Kushal Falls Agra Canal given in Fig 13. The discharge of the escape its bed width and other essential particulars are as is so often the case entirely wanting. Fig 13 is a view of a Wingless Fall.

Editor's Notes

(P) Notch Falls (par. 38) — The Notch fall was invented by Punjab irrigation engineers and after experimental investigations by Mr. (now Sir) John Benton and others was first brought into use extensively during the construction of the Sirhind Canal system in the period 1872–1882. The
author has taken his diagrams and description of the method of design of these Notches from R B Buckley's excellent treatise The Irrigation Works of India and Egypt which however represents an obsolete type of design in this particular instance. The orthodox method of design is set forth in Punjab Irrigation Technical Paper No 2 wherein the standard shape of notch for canal falls is shown as in Figs 14a, 14b here inserted. It will be noticed that in these diagrams the upstream sides of the notch (in plan) are inclined at 45 degrees to the axis of the canal and the downstream sides at 22 degrees thereby giving the notch a more efficient shape of adjutage for discharge than in the type taken from Buckley in which the upstream angle is about 62 degrees with an angular edge to the mouth piece which is liable to retard flow.

The notch will in Fig 14 is 3 feet thick for a height of 7.5 feet a ratio of 2.3 which is as it should be for stability against water pressure. In view of the dynamic action of the current passing the wall on either side a lesser ratio of base to height is not permissible. The following is quoted from the Punjab Technical Paper No 2 —

In Mr Benton's experiments it was found that the value of the coefficient of discharge varied from 0.62 to 0.67 where the mean value being 0.67 and this has been used in all notch calculations the velocity of approach being also taken into account. Observations on distributory notches constructed in accordance with Mr Benton's formula have shown that by substituting 0.70 for 0.67 the velocity of approach may be neglected and considerable labour of computation avoided. Experiments on canal notches have not been very extensive but they indicate that by employing a coefficient of 0.78 and neglecting velocity of approach a result is obtained practically identical with that of the more laborious formula. Accordingly in the formula now given the terms involving velocity of approach have been entirely omitted and these coefficients substituted for Mr Benton's coefficient of 0.67.

It is customary for branch canals or distributaries to offset from their parent channel at points a few score or a few hundred feet up stream of masonry falls and in such cases the discharge passing over the fall to the canal below may be considerably less than that of the canal up stream of the offsets. The width and depth of the canal below the fall may be appreciably different from the dimensions up stream of it yet the notches must be designed to hold up the water to the normal up stream depths whilst at the downstream discharges. The details complete the formula of design set forth in the Technical Paper above in full but we content our selves with dealing with the simple case discussed by our
Chapter IX—Editor's Notes

Author, of a canal with a full supply depth of 8 feet of water, discharging 2,500 cusecs, both upstream and downstream. The notches have to be designed to discharge correctly at two depths, \(d_1\) and \(d_2\), such that if \(d_m\) be full supply depth and \(d_0\) be lowest working depth, then

\[
d_2 = \frac{1}{2} (d_m - d_0), \quad \text{and} \quad d_1 = \frac{1}{4} (d_m - d_0).
\]

If we assume \(d_m = 8\) feet, and \(d_0 = 4\) feet, then \(d_1 = 5\) feet and \(d_2 = 7\) feet. In the case considered we have

- Discharge for depth \(d_1 = 5\) = 1,136 cusecs = \(D_1\).
- Discharge for depth \(d_2 = 7\) = 2,000 cusecs = \(D_2\).

Other notations are

\[
l = \text{length of sill of notch in feet}
\]

\[
n = 2 \tan \alpha, \text{ where } \alpha = \text{inclineation to vertical of sides of the notch}
\]

\[
l + nd_m = \text{top-width of notch depth } d_1 = 8 \text{ feet}
\]

\[
\iota = \text{coefficient of discharge (0.78 for canals, 0.70 for distributaries)}
\]

\[
e = \text{depth to which sill of notch is submerged by tail water}
\]

\[
f = \text{drop of fall in feet}
\]

Canal Notches with ' Free Fall

General equation:

\[
D = \frac{c \sqrt{2g(l_2^2 + 4nd)}}{5.35c} + 0.4nd
\]

Whence we deduce

\[
n = \frac{D_2 \frac{d_2}{2} - D_1 \frac{d_1}{2}}{2 \times 4c d_2^2 d_1^2 (d_2 - d_1)} \quad \text{and} \quad l = \frac{D_1}{5.35cd_1} - 0.4nd_1
\]

Applying this to the data of the case considered, we get

\[
n = 1 \text{. 92 feet, } l = 19 \text{. 5 feet, top width } = l + nd = (19 \text{. 5} + 15 \text{. 4}) = 34 \text{. 9 feet}
\]

Full area of waterway = \((19 \text{. 5} + 34 \text{. 9}) \times 8 / 2 = 217.6 \text{ square feet}

If we decide to have eight notches, we have for each

Bottom width = \(\frac{19 \text{. 5}}{8} = 2.44 \text{ feet, top width } = \frac{34 \text{. 9}}{8} = 4.36 \text{ feet}

The corresponding results arrived at by our author are

Bottom = 3.3, top = 5.7, area of waterway for eight notches = \(5.7 + 3.3 \times 8 \times 8 = 288 \text{ square feet}

Whence it appears that his notches are 32 per cent looser than those given by the orthodox calculations. This is due to his having reckoned with a coefficient \(c = 0.623\), instead of 0.78.

It is better to have notches a little too tight than a little too loose, because the error of tightness can be more easily remedied without closing the canal by cutting down a course or two of brickwork from the top of the notch walls, as a temporary measure, besides which it is better to have the canal water level a few inches above rather than below the normal required for command of off-taking channels.

In par (12) our author considers the case of the same canal where it has a fall of 2 feet only. In this case the fall will be drowned at depth \(d_1\) as well as at \(d_2\), and the orthodox formulae will be

\[
l\left(d_1 + \frac{\epsilon_1}{2}\right) + n\left\{\frac{3c^2}{4} + \epsilon_1(d_1 - \epsilon_1) - 0.4(d_1 - \epsilon_1)^2\right\} = \frac{D_1}{5.35\sqrt{d_1 - \epsilon_1}}, \quad \text{and}
\]

\[
l\left(d_2 + \frac{\epsilon_2}{2}\right) + n\left\{\frac{3c^2}{4} + \epsilon_2(d_2 - \epsilon_2) - 0.4(d_2 - \epsilon_2)^2\right\} = \frac{D_2}{5.35\sqrt{d_2 - \epsilon}},
\]
From these equations we deduce —

\[n = 5 \frac{13}{15}, \quad l = \frac{18}{6}, \quad \text{top width} = 59\frac{6}{6}, \quad \text{area of waterway} = 312 \frac{8}{8} \]

If we have eight notches, the data for each are —

\[l = \frac{186}{8} = 2.33, \quad \text{top width} = \frac{596}{8} = 7.45 \]

The corresponding data according to our author are

Bottom width = 4.76, top width = 9.24

Total area of waterway = \(\frac{4.76 + 9.24}{2} \times 8 \times 8 = 448 \) square feet, 0.43 per cent greater than that of the orthodox calculation.

Our author decides first how many notches he will have and then calculates the dimension of each. It is simpler and preferable to calculate the dimensions for a single notch, taking the whole discharge of the canal, and then to decide how many separate notches it will be desirable to have.

The above formula for "drowned" notches are lengthy, but with a little practice the engineer dealing with special cases, especially those of channels discharging less than 250 cusecs, will find that he can simplify his calculations greatly without incurring serious error. In the case of Distributary notches, instead of the shape shown in Fig. 14 it is customary to make the sides of the notch in horizontal section simply semi-circular, as in Fig. 1a, with diameter equal to the thickness of the wall at bed level. As a general rule we think that it will be found correct enough to calculate the notch for two depths, viz., \(d_2 \) = full supply depth and \(d_1 = \frac{1}{3}(d_2) \). And we think that the assumed coefficient of discharge should be no higher than 0.75 for a "Free Fall," and graduated up to 0.85 for a "Drowned Fall" in proportion to the degree of drowning.
CHAPTER X

CANAL REGULATION BRIDGES AND ESCAPE HEADS

(1) In places on a canal where an escape or a branch takes off, a regulating bridge across both works is generally necessary. Distributaries very frequently take off above falls and the two works are often combined. No object, however, is gained by placing the headwork of the branch directly at the fall and so amalgamating them into one, a better arrangement is to make the branch take off separately, higher up the canal. The regulation of falls by means of a superimposed bridge with shutters or baulks which drop on the weir is hardly practicable where notch falls are concerned, and the system is generally to be deprecated as interfering with the regimen of the canal. Skew heads for branches have sometimes an advantage. The branch could leave the main canal at an angle, the head being recessed so as to admit of the spans being square to the axis of the branch. An alternative is a skew head with the piers run forward to the canal side slope.

(2) The principles governing the design of canal regulation bridges are not quite identical with those which affect that of canal heads. In the latter, the object of the design is to enable the headwork, if so required either to completely cut off all ingress of the water from the river into the canal or else to admit only as much as may be desirable.

The same functions have to be performed by the canal regulation bridges with this difference, that the maximum head of water dealt with is moderate in depth, seldom exceeding 10 feet at the outside, whereas in a river canal head the flood water may rise to anything up to, say, 30 feet above floor level.

(3) A design for a regulation bridge and branch head is given in Fig. 1. In this case the water in the canal is assumed to be 8 feet deep and that in the branch 6 feet, the floor of the latter being placed 2 feet above that of the main channel. The banks, with cutting and spoil, are assumed to be 15 feet above canal bed level and the bridge roadway or platform is placed at this level. The spring of the arches is fixed 2 feet above T.S.L., which is the same* in the branch as in the canal. In the canal regulation bridge the spans are made 10 feet. Large spans with high, heavy arches are quite out of place in irrigation canals, where headway need not be provided for laden barges. Most of the examples of existing canal regulators given in Mr

* This is not a good arrangement. There should always be a difference of water level of at least 2 feet between main canal and branch canal or of at least 1 foot between canal and distributary to allow of a crest wall and silt excluding arrangements between parent channel and off-taking channel. -Ed
Buckley's "The Irrigation Works of India" are of this latter type, which it would be folly to imitate in a purely irrigation canal. The openings in the skew branch head which takes off at an angle of 60 degrees with the axis of the main canal are made 8 feet wide, which will give an oblique span
of about 9 feet. The skew arches have the same rise and thickness as in the canal regulator.

(4) The disposition of the wing walls in the combined work is arranged so as to allow of a suitable approach to the bridges from the canal bank road on either side, as well as from the country at the rear. The connection between the two works is formed by a short continuation of the abutment of the canal regulator, which joins on to the end of the left skew abutment of the branch. This is the only vertical retaining wall in the design. The width of the roadway between parapets is 12 feet. This makes the length of the piers and the floor in both cases about 24 feet. The head of water being only 8 feet, the proportional length of the masonry floor comes to $3H = 24$ feet, or measuring from the grooves, over $2H$, so that the width of the masonry floor is 2 feet, in excess of requirements, and need not be extended beyond the down stream pier noses. The thickness of the floor is $\sqrt{H} = \sqrt{8} = 2.8$ feet, $\frac{S}{10} = 3.8$ feet in the main regulator, and $\sqrt{6} + \frac{S}{10}$ = $2.5 + 0.8 = 3.3$ feet in the branch, the subsoil being assumed to be firm clay. H is the depth of full supply above floor, and S the span. The addition of $\frac{S}{10}$ is for the piers, to allow increased depth for distribution of weight, which answers well in practice.

(5) The gates will be lifted by a travelling winch, which will run on rails clear of the roadway. One rail will rest on the dwarf parapet wall provided for that purpose, and the other will be bolted on to a rolled beam some 9 inches deep built into the top of the up stream cut-waters, which for this purpose are continued up to road level. The detail of this arrangement is shown on a larger scale in Figs. 1d and 1e. The gates, which only require a watertight connection between each other, will be in plan as shown in Fig. 1e. They will, as a matter of course, be fitted with roller attachments.

(6) The arrangement of the pitching below the two works is shown in Figs. 1a, 1a and 1b. That on the canal slopes is taken 2 feet above the water line and terminates in a slope of 45 degrees. Where the sloped pitching projects beyond that in the canal bed, a narrow slip of horizontal pitching extends on either side to form a foundation for the toe of the slope.

(7) Fig. 2 is a presentment of the Raswanna Regulator on the canal of that name in Lower Egypt. With the exception of the down stream wings the alignment of which presents some novelty, the design is but a copy of the old Ganges Canal types.

The following points are noted —

(1) Considering the depth of water viz. over 15 feet, the spans are very narrow.

The width of openings, except in the case of weir sluice heads, should
not as a rule be much less than the depth of water, and as the regulation of this work is believed to be only partial spans of 4 or 4½ metres i.e., 13 to 15 feet could well have been adopted. The regulation is effected by the old primitive method of wooden sleepers or baulks dropped into grooves cut in the brick piers.

(2) In conformity with the practice in Upper India, the wing walls are vertical in section which is the least economical form. The direct return up stream wings are likewise an unsuitable disposition unless for a head regulator taking off from a river bank which is apparently not the case here. Reference to the elevation in Fig 2 will demonstrate how injuriously the sudden narrowing of the water way due to the abrupt entire suppression of the side slopes must affect the current. A good arrangement of the water wings will on the other hand ensure as gradual a change as possible in the
sectional area of the water way, and this can only be effected by either adopting splayed walls which gradually absorb the side slopes, or else a direct continuation of the abutments by means of a sloping crested wall, similar to what is adopted down stream in this design, but parallel to the axis of the canal, which type of water wing effects a similar gradual widening, but in a different manner.

(3) The down stream wings in this work converge on plan, the object being to force the current into the centre of the water way. It is believed that this device will defeat the very object which it is intended to secure. The contracting of the water way will tend to cause the current, on being released from the restraint of the wings, to spread out on both sides, as water flowing through an adjutage undoubtedly does.

A good point in the design is the arrangement of the pitching on the slopes, which is as it should be.

(4) The floor of the work is 1 metre or 3½ feet thick, which is sufficient, having regard for the narrowness of the spans.

The length of the floor is, if anything, in excess of requirements.

(8) Fig 3 is a design of a bifurcation. The depth of water is taken as 6 feet in the canal and also in the two branches. It does not call for much
When a vertical fall of water surface is not always available.

Figs. 4a, 4b, 4c, 4d—Design for Canal Escape Head.
CHAPTER X—CANAL BRIDGES AND ESCAPE HEADS

The wing walls have been shown as vertical in order not to complicate the sketch unnecessarily. A design for a regulator without bridge to pass traffic is given in the next section on Canal Escape Heads (Fig. 5).

Canal Escape Heads

(9) Notwithstanding the fact that the admission of water at the head of a canal may be under complete control, still emergencies may arise when it may be necessary to shut off, or reduce supply, by reason of a breach of the canal embankments or by reason of local rainfall which may stop the demand for canal water. The canal head may be very far off, say 50 or 100 miles distant, from the site of the emergency, in which case it might take two or three days for a canal head closure or reduction of supply to take effect where needed. For this reason escapes in suitable positions, whereby the surplus supply can be got rid of, are sometimes useful. Their existence, however, is apt to lead to careless regulation of supply, and to waste of water and interruption of irrigation, so their use should be discouraged except on occasions of real necessity.

(10) The position of an escape head should be as close as possible to a drainage line, so as to diminish the length of the excavation in the channel. Falls may have to be constructed along its course, in order to overcome the difference of level between the bed of the canal and that of the river or stream into which the escape channel will fall.

Canal aqueducts crossing drainage lines can sometimes be utilised with advantage to pass off surplus water. An example of such a work is given in Fig. 7, to which reference will subsequently be made.

(11) Fig. 4 is a design for a canal escape head combined with a fall under the following assumed conditions——

The bed width of the canal is 100 feet, side slopes 1 to 1, the depth of water, full supply, is 8 feet, and mean velocity is 2\(\frac{1}{2}\) cubic feet per second, having a discharge of 2,160 cubic feet.*

(13) The design of the escape head in Fig. 4 consists of a bridged overfall weir, the length being divided into seven bays of 14 feet. As the bridge will be used for traffic being on the canal bank road, the width will be 22 feet between parapets. The arrangement for the gates will be similar to that in the example given in Fig. 1, the outer rail for the traveller being supported by a rolled girder built into the top of the front cut waters. The depth of film (d) is taken as 8 feet (that of full supply in the canal) for purposes of sectional calculation.

The disposition of the wings down stream (Fig. 4a) is of the dog legged

* An escape channel may sometimes be used as a sluiceway for scouring silt from the bed of its parent canal, but this is not the primary function of its design. In order to function in that way, it would need an outfall far steeper than that of the canal. Even if such an outfall were installed, the need for a head would be less.
type the up stream right wing is of the splayed sloping crested type to allow easy access of entry for the water in the channel with regard to the left wing down stream (See Fig 5) the junction with the regulator is formed by a continuation of the abutment on a reduced section.

![Diagram of irrigation works]

Figs 5a 5b — Design for Regulator below Escape Head

The dimensions of all the parts are in exact accordance with the formulas and rules adopted by the author as detailed below —

- **Rise of arch**
 \[2 \text{ feet} = \frac{S}{7} \]

- **Thickness of arch**
 \[1\frac{1}{2} \text{ feet} = 4 \sqrt{r} = 4 \sqrt{12} = 1.4 \]

- **Thickness of abutment at springing**
 \[\frac{r}{5} + \frac{V}{10} + 2 = \frac{12}{5} + \frac{2}{10} + 2 \]
 \[= 4.6 \text{ feet} \]
CHAPTER X—CANAL BRIDGES AND ESCAPE HEADS

Thickness of floor = $\sqrt{H} + \sqrt{d} = \sqrt{8} + \sqrt{5} = 5.0^*$

Length of floor beyond weir wall = $2(H + d) = 2 \times 13 = 26$ feet

Thickness of piers = $3S = 3 \times 14 = 42$ (taken as 4 feet)

The thickness of the base of the retaining walls is in accordance with the formula $4H - 1$ for stone walls with a face batter of 1 in 10. The up stream wing has this proportional thickness at the canal bed level below ground the back is carried down vertical the face continuing to batter to the foundation.

(14) Fig. 5 is the design for the canal regulation bridge just below the escape head. It is not supposed to be required to cross traffic but only for regulation purposes.

The spans adopted are the same as in the escape head viz. 14 feet of which there are seven giving a combined width of waterway of 98 feet close approximating to the bed width of the canal which is quite sufficient for bridges and cross canal works. The canal bed is shown widened out on one side only.

(15) We will now proceed to give an example of an existing escape head with fall which is on the Godavari Eastern Canal.

Figs. 6a and 6b are drawings of this work. The depth of the fall is exceptionally great being 16 feet above floor of fall and 13 feet above the level of the escape channel below. The latter being 3 feet higher than the floor a water cushion 3 feet deep is formed by means of a raised curtain wall. The weir is divided by piers into five spans of 10 feet. The piers are partly built over the weir and the roadway is only 6 feet wide between parapets. From this it is evident that the bridge is not required for traffic but is merely a foot regulation bridge. This work seems on the whole to be well planned although the curved wings are not commendable. Straight battered wings would answer the purpose just as well and be easier to build besides which the railway under bridge style of curved wings adopted down stream which is so common in all Madras works is objectionable their curved shape tending to encourage a rotary movement in the water below the weir termed pooling which is very destructive in its action.

The piers are economically designed the thickness is 3S at the base and they taper by insets to 2 feet or 2S at the springing of the arch of the bridge. Piers in a fall are subjected to very slight water pressure end on and receive great support from the weir wall into which they are built. They are not likely ever to be subjected to lateral pressure as in the case of a regulating head or bridge consequently the thickness can safely be diminished to that suitable for an ordinary bridge. The depth of water liable to pass over the weir is probably not more than 3 feet or 4 feet judging from the height of the banks of the approach channel. The closure is effected by wooden gates raised by screw gear. A small movable winch on

* But this feature must be governed by the nature of the foundation soil — F. B.
wheels which could be taken away and housed when not required, would probably form a better lifting apparatus, or else a row of simple wooden windlasses fixed on the cut-waters. Screw gear is suitable for reservoir sluice gates in deep water, which are moved 2 feet or 3 feet up and down at the outside, but in the Madras Irrigation Department it is applied to every kind of water gate from underslucses to waste weirs.

(16) The floor of this work is only 4 feet in thickness. The nature of the foundation soil is not known, but as the work has existed for over half a century, the floor is presumably strong enough.

The cistern forming a water cushion 3 feet deep, is in accordance with Dyas' formula, as given in Molesworth's Pocket Book (see Chap IX, par (26)).

The weir wall is 4 feet thick at top and 8 feet at the bottom. Being 16 feet high, from crest to floor, it would need a base thickness of \(\frac{16}{3} = 5.33 \) for earth pressure, or of \(\frac{16 \times 2}{2} = 10.66 \) for water pressure. The thickness adopted \(\frac{16}{2} = 8 \) feet, seems suitable, and has proved so.
(17) It has already been noted that escapes for surplus water can easily be arranged for at aqueducts or drainage crossings the escape or surplus weir being combined with the latter work. An excellent example of such combination is given (Fig 7) of a work on the Connamur Canal Madras.

The canal here crosses a drainage line which is taken underneath it by a syphon or syphon aqueduct. This consists of two culverts 8 feet wide and about the same height. The waste weir and regulating and traffic bridges are built at the end of these two culverts; half the weir being simply a dwarf wall built over the end of the barrels, the other half lying beyond them. The three centre piers are spaced 9 feet apart and are built in part directly over the central pier and the two abutments of the syphon. The weir consists however of four spans of 9 feet two of which lie outside the syphon altogether and here the weir wall is of the full depth of 14 feet. Both abutments are therefore quite clear of the syphon.

(18) An example of a very large escape which belongs more properly to reservoirs than to canal works is the Koshesh Escape in Lower Egypt.

Figs 8 are plans of this immense work which consists of sixty spans of 3 metres or 10 feet and it upholds 62 metres or say 22 feet of water although it is stated in Egyptian Irrigation to be subjected to a head of 4 metres only. This is too vague to enable a calculation to be made of the horizontal thrust of the water on the work though it is sufficient for the vertical pressure on which the design of the floor may be made to depend. The soil is good hard clay.

The main peculiarity of the design is the division of the waterway into two parts by arches thrown between the piers which thus form an intermediate platform. The upper and larger portion of the vent above this platform is closed by iron gates hinged at the bottom which when released fall automatically on to the platform to which they are hinged. They cannot be raised when the level of the water is much above that of the platform but are intended when the reservoir has to be emptied to remain down till the water has run off no regulation by them being possible. The vents below the platform are closed by ordinary draw gates working in grooves these only come into use when the water above the level of the platform has been drained off. A 12 feet roadway between parapets is provided so that evidently provision has to be made for crossing traffic. This and the considerable projection of the piers in front of the gates apparently to allow a wide space between an outer set of emergency grooves and the face of the barrier gates causes the piers to be of exceptional length which is not required for structural resistance. This work is evidently erected in the middle of a long embankment crossing flat country similar to a sluice in a tank embankment it is not situated in a depression or marked natural watercourse.

The arrangement of longitudinal rubble spurs above and below the escape to guide the current in a direction normal to the axis of the work is admirable and so is the disposition of the abutment wings.
(19) In some other points the design of this work is, however, open to criticism.

Taking the floor first, the depth under the piers, which depth runs right through, is considerable, being 275 metres, or 9 feet. Considering that the soil is hard clay, and the head of water nothing very remarkable, being 7 metres, or 22 feet, when the bed is below dry, but stated not to exceed 4 metres, or 13 feet, this mass of rubble masonry appears excessive.

The Asuut works built not on hard clay but Nile mud, have a depth of foundation of 3 metres, or 10 feet, with not far short of the same head, viz., 3.25 metres in the Ibramya Head.

With regard to the superstructure, the provision of spare grooves and the consequent extension of the piers up stream, a construction always to be avoided if possible, appears an unnecessary precaution, particularly in view of the fact that the work will only be used once a year, and will doubtless remain clear of water for several months, when any repairs to gates, etc., could be carried out. The floor should, however, be so constructed that it will never require repairs, this can always be ensured by using good cement masonry of sufficient depth.

(20) The division of the spans horizontally, though doubtless an excellent arrangement in itself, it carried out by the insertion of a great thick vaulted masonry platform, which takes up a great deal of the waterway, necessitating more spans to carry off the discharge than would otherwise be requisite. This obstruction is not short of 5 feet in depth. Here is a case in which iron could be used with great advantage in place of masonry. The falling gate, hinged at the bottom, necessitates a long platform to receive it when down. If a gate hinged at the centre of pressure, i.e., at one-third of the height, or thereabouts, be substituted, it could be manipulated with great ease, even under full pressure, that on the upper and lower leaves being balanced. It could also be arranged to fall automatically when the impounded water rises above a fixed level. A balance gate of this description is hinged at both ends on a steel axle, which is either built into the piers or else is received into a movable plunger block, which, provided with anti-friction rollers, can slide up and down an iron groove. The gate, after being pulled into a horizontal position, can then be raised by chains attached to the blocks in the grooves when offering the least resistance to the water pressure. This, in certain cases, is a more suitable arrangement than that adopted in Fig 9 (post).

The total pressure on each axle will be \(\frac{wh^2}{4} \) or, in the case shown in Fig 9c, \(l = 16 \) feet, \(h = 13 \) feet and \(a = \frac{1}{3} \) ton, whence the expression becomes \(\frac{16 \times 169}{4 \times 30} = 19 \) tons, or taking 6 tons as safe shearing stress for steel, the sectional area of the axle will be \(\frac{1}{4} = 3\frac{1}{4} \) square inches nearly, requiring to be 2 inches in diameter.

(21) Considering the depth of water (viz., 22 feet), the spans of 10 feet width are decidedly too narrow. They could be well increased to 5 metres.
or 16\frac{1}{2} feet, the pier being 2 metres wide or 4S. A revised design comprising these alterations is given in Fig 9.

The spans are increased to 5 metres and in place of the heavy masonry...
platform, a Z-shaped rolled beam is substituted, on the upper flange of which the base of the swing gate abuts, while the lower draw gates presses on its lower flange. The upper swing gate is 4 metres, or 13 feet, the lower draw gates 2\frac{1}{2} metres, or 8\frac{1}{2} feet deep. The latter can be raised 3\frac{1}{2} feet while the upper is down. The depth of the free waterway is greatly increased by this arrangement, viz., from 5 metres to 6 metres, or from 16\frac{1}{2} to 20 feet. The sixty spans of 3 metres give an effective waterway of 60 \times 3 \times 5 = 900 square metres, or say 10,000 square feet. With the alterations shown in Fig. 2, each span of 5 metres has a free waterway of \(5 \times 6 = 30\) square metres, the required number of spans of 5 metres will then be \(\frac{900}{30} = 30\) spans, giving a length between abutments of \((30 \times 5) + (29 \times 2) = 208\) metres. The existing work has a length between abutments of \((60 \times 3) + (59 \times 1.3) = 257\) metres, the revised design will thus cost 20 per cent less, and with the further reductions in the superstructure and floor (if the latter were reduced to reasonable dimensions), the saving would be quite 25 per cent.

(22) A rough sketch of the swing gate, an invention of the author, is given in Figs. 9 and 9c. It is shown clear of the archway, but could be fixed underneath if so desired.

The arrangement for revolving the gate consists of two endless chains attached to projections on either side of the top of the gate, which chains work inside curved iron grooves. Each chain at the top of the piers is carried round a winch drum connected by a horizontal shaft revolving which either way causes the gate to be lowered or raised to any extent. If the gate is required to fall automatically, or at once when released in the former case the axle can be fixed at such a height that when the water reaches a certain point the gate will revolve of its own accord, overcoming the friction of the chain and winches. If, on the other hand, the gates are required to be suddenly released with full supply on, the winch drums can be prevented from turning by a catch, which being knocked away the gate will be free to revolve.

In the design in Figs. 9b and 9c the gate is not intended to be lifted, but when horizontal to remain in that position with water passing above and below it. If it is deemed desirable to lift the gate, grooves can be provided as shown dotted with blocks for containing the axles of the gate. These blocks are attached to chains lying in the vertical grooves by which the whole gate can be lifted up by a traveller. The arrangement adopted in the plan of pivoting the gate on a fixed axle on which it swings and leaving it in situ is simpler and better, the only objection to this arrangement being the possible accumulation of floating debris on the end of the gate. This, however, can be easily got rid of by turning the gate round a little for a time when it will be swept away by the current.

(24) The design of distributary heads should be similar to that of canal branch heads or cross canal regulators i.e., an open waterway with or without a raised sill, closed by draw gates.
For such works double wooden gates can well be used. These can easily be fitted with small iron rollers, the lateral stanching being effected by vertical stanching strips fastened to the gate at their upper extremity only.
The pressure of the water forces these against either the base or the side corners of the tables of the iron grooves. These gates can be easily manipulated by a wooden windlass fixed over each span, the barrel fitted with ratchet and pawl. The windlass can be turned by detachable wooden bars fitted into holes, or else a spoke wheel can be fixed in the centre of the drum. The system so much in vogue in Madras, of constructing canal and distributary heads on the principle of small sluice ways situated at floor level, which are closed by a gate operated by screw gear, is deprecated.

(25) A view of an escape head, situated a mile or so below the intake of the Calgary Canal, in Alberta, Canada, is given in Fig 10.

The structure, as will be seen, is of wood and consists apparently of five vents, each 5 or 6 feet in width, closed by draw gates, which are operated by rack and pinion hand gear. It forms a very instructive example as to the use to which timber can successfully be adapted. This work, together with all other timber erections on this canal, will, however, eventually have to be replaced by permanent structures in masonry or concrete.

Possibly in some future day these arid canal banks will be planted with umbrageous trees, and thus come to bear some resemblance to the shady avenues on the older Indian canals which in a thirsty land add such a charm to the landscape.

(26) Fig 11 is a view of a bifurcation on the same canal. The regulators are fitted with the rear pivoted balance gates illustrated and described in Chap VIII. This arrangement though doubtless effective and easy of manipulation has, it must be confessed, an extremely crude appearance. These temporary structures are it may be observed by no means inexpensive. It is believed that a properly designed masonry work would cost very little if any more.

Fig 11 Bifurcation of Calgary Canal
The policy of the Canadian Pacific Railway in this canal, as in their own particular case was, however, to get the work through somehow as soon as possible, and then subsequently improve gradually when leisure and opportunity offered. Who will say that in a pioneer project of this kind this was not the proper policy to adopt?
CHAPTER XI

CANAL CROSS DRAINAGE WORKS

(1) The disposal of drainage that is intercepted by a canal can be classified as the following —

I By lateral diversion i.e. by excavating a channel parallel to the canal, the stream can be thrown into another drainage line for the disposal of which provision has been made.

II By passing it underneath the canal, the canal either crossing the stream on a raised aqueduct or if the headway is insufficient for a clear passage, the bed of the stream is depressed below normal level and the water passes in a tunnel underneath, rising again on the further side. This latter is termed a syphon or syphon aqueduct.

III The drainage water can be admitted into the canal itself. This is termed an inlet.

IV The drainage can be taken into and across the canal at the level of the bed of the latter, the inlet on one side and the exit on the opposite side when both channels are at approximately the same level. This involves one regulator across the canal and one at the further bank across the exit of the drainage. This is termed a level crossing (Figs. 18 and 19).

V The drainage can be taken over the canal by an aqueduct. This is termed a superpassage to distinguish it from an aqueduct passing a canal over a natural stream or drainage line.

VI The canal can be taken under the drainage line by a depressed syphon.

(2) In Fig. 1 we have an example of Class I being the Thori Nala Aqueduct on the Midnapur Canal. In this work, the canal bed is 25 feet above that of the river, giving sufficient headway to pass the highest flood which is 18 feet deep.

Like all masonry aqueducts, the construction mainly consists of an arched bridge with platform at canal bed level and provided with two solid parapets which retain the water flowing through.

To reduce expense, the waterway of an aqueduct is often made narrower than the average width of the canal in earthen banks. Owing to the smoothness of the sides, the coefficient of roughness (n) is much less than that applicable to channels with earthen sides and bed, being 0.13 in the former against 0.25 or 0.225 in the latter. This alone greatly increases the velocity so that a considerable reduction in section can be effected even if the original mean velocity of the current were retained. As however that velocity can safely be increased in the masonry channel in cases where conditions permit, a still further reduction in the width of the waterway in the aqueduct can be.
effected. In the example we are considering, the bed width is apparently not reduced (Fig 1d)

(3) The thickness of the arch throughout is $2\frac{1}{2}$ feet, the curvature being 90 degrees. The value given to n in the formula $n\sqrt{r}$, adopted for crown thickness (vide par (17), Chap IV), is therefore 55. The weight of water overlaying the arch is $7 \times \frac{1}{6}$ tons = 2 ton per square foot.

The live load in ordinary bridges is assumed at about 120 lbs per square foot. This represents an equivalent weight of water of 2 feet in depth. Therefore the extra live load, which, however, is not suddenly applied and removed, as in the case of railway and road bridges, will be the weight of the depth of water carried, minus 2.

The value of the coefficient n in the formula $n\sqrt{r}$ can then be approximately increased in proportion to the depth of water carried, in ordinary cases $n = .4$.

The following rule for deducing the increase to the value of n will suit in most cases. Let d = depth of water, then $n = 4 + 0.2(d - 2)$. When the depth of water is 2 feet, n will remain 4, with 5 feet carried $n = 46$, with 6 feet $n = 48$, with 7 feet $n = 50$, with 10 feet $n = 56$. This is for large spans of
over 25 feet. For smaller spans n should be taken as 5, no matter what the depth of water is.

In the example of the Thora Nala Aqueduct the crown thickness would then be, with 7 feet water carried, $5 \times \sqrt{r}$ or $5 \times 4.6 = 23$ feet.

The parapets, as is usual in large aqueducts, are widened out to carry a roadway, as communication for cart traffic must be kept up along canal banks. The parapets here are 7 feet wide at base and 6 feet at top, corbelled out to provide a 10 feet roadway, with an iron rail fence on either side. The thickness of the parapet in this case is excessive. To resist water pressure it need not exceed two thirds the depth of water.

(4) The piers are S_6 or $\frac{167S}{6}$ in thickness. They widen out by offsets to 7 feet, or $23S$, at the base, S being the span.

There is no definite rule regarding the ratio of the thickness of piers proportional to the span in the case of large span bridges. It may be taken to vary from S_{10} to S_5.

For heavy works of this description the proportion S_6, as in this case would not be excessive. In the Kali Nadi Aqueduct of 60 feet spans (Fig. 3) the proportion is $\frac{1}{82}$, and in the Gunneram Aqueduct (Fig. 4), with spans of 40 feet, the proportion is $\frac{1}{72}$ nearly or, to be exact, $15S$. In the Budki Superpassage (Fig. 10) the proportion is $\frac{1}{8}$. All these carry about 7 feet of water, and are all built of brickwork.

The piers of large span bridges should increase in thickness towards the base with the object of better distributing the pressure on the foundations, and further of inducing a uniform stress at all points in the height of the pier. A formula for effecting this is given in Molesworth's Pocket Book, p. 89.

In the example we are now examining the width of the pier increases by two offsets from 5 feet to 7 feet at the base. A straight or curved batter would have been a simpler and better construction.

(5) The floor is composed of inverted arches with a versed sine of 5 feet, the thickness in the centre of the span being 4 feet, and that at the spring line of the inverts 9 feet. The object of this invert is evidently to distribute the weight on the piers evenly over the somewhat shallow foundation.

*A suitable rule to adopt would be to make the top thickness of brickwork piers of aqueducts sufficient to leave a thickness of at least 1 foot between haunches of arches at their extrados, say $t = \frac{1}{8}t$, radius $= r$.

† It is a mistake to design an invert with a flatter or smaller angle of curvature than that of the overhand arch, for that means a greater radius and greater horizontal thrust which tends to displace the abutments. Yet it is the usual practice to design inverts in the manner here condemned, with the result that many engineers regard inverts generally with suspicion. The curvature of an invert should not be less than a quadrant, as that is the curvature of least horizontal thrust, but in any case it must have some tendency to lateral displacement of abutments unless its horizontal thrust be balanced by some outside force.
(6) The sections of the abutment and of the wing walls (Fig. 1b) are good
figs. 2c and 2d are part elevation and plan at a smaller scale. Reference to
fig. 1d will show the disposition of the wings. In almost all aqueducts and
superstructures double sets of wings are required viz. two long curved land
wings to form the connection between the masonry aqueduct and the earthen
banks of the approach channel and two water wings connecting the face
of the abutments with the river banks on either side. The land wings form
really a continuation of the parapet walls and are of the same section at the
top. Being subjected to hardly any earth pressure they can be built with
vertical sides of the same width throughout as the top.

(7) Figs. 2a 2b 2c and 2d are different views of the Kern Aqueduct
on the San Canal. The construction is very similar to the last example the
main peculiarity of this design being this that to obtain the necessary head-
way the spring lines of the invert arches are made on a level with the bed of
the drainage line, the crown and floor proper being depressed 3 feet below the
normal bed. A down stream pitched slope connects the two levels. If the
flood line rises above the archway, the aqueduct will become a syphon
aqueduct. The drawing in The Irrigation Works of India from which this
figure is prepared does not however show the flood line. This device of
repressing the floor to avoid the obstruction offered by the invert is a good
one especially on the assumption that the invert is necessary. The bases of
the piers are carried through the concrete to the ground—a bad arrangement
which tends to concentrate instead of distributing the weight of the super-
structure. The thickness of this mass floor is determined by the limit
pressure allowable on the soil. The bearing area of the pier base increases
1 foot in width for every foot in depth of the floor (par. (9) Chap. IV.)

The invert stops dead short at the termination of the piers, the sloping
continuation peculiar to the last example not being adopted.

(8) The parapet in this example is 4½ feet thick or just about \(\frac{3}{4} D \) it is
widened inwards at junction with the arch by the addition of a triangular
strip thickening the actual base to 8 feet and filling up the corner. This is
an excellent arrangement. The widened roadway along the top of the
parapet is formed by a projecting cornice on the inner side, and by iron
brackets probably planked over with a fence on the outside. This forms a
roadway 8 feet wide giving just room for a cart to pass. The arch is 2 feet
thick i.e. very nearly \(\frac{3}{4} \sqrt{7} \) the radius being 14 feet.

The section of the abutment which is 10 feet thick or half the span and
with the buttress (side Fig. 2b) is 16 feet thick in the centre may have been
designed specially heavy in order to resist thrust of inverts. The bed of the
canal is apparently not made up level with the top of the abutment but
slopes downwards towards the ground surface. This slope is pitched and
likewise both the inner slopes of the canal banks.

The disposition of the wings is shown in Figs. 2b and 2c. The water
wings are semicircular in plan and are very high so that the land wings are
subjected to very slight unbalanced earth pressure. The widening of the
canal from 40 feet to 120 feet is shown in Fig. 7c. The semicircular water wings form a protection against the scour of the river in flood.

(9) Fig. 3 is a representation of the Nadrao Aqueduct over the Kali Nadi on the Lower Ganges Canal. This is one of the largest single works erected in Upper India, consisting of fifteen spans of 60 feet and a width between parapets of 130 feet. This is the second work erected at this site within a short period. The first aqueduct was designed to pass a maximum discharge of 18,000 cubic feet per second in the stream and was completed and in working order when after a period of exceptionally heavy rainfall the Kali Nadi, which is a natural drainage depression, the banks and bed being cultivated came down in an unprecedented flood. With the exception of one railway bridge which was founded on deep sunk iron caissons, every single bridge on the long watercourse was destroyed. The aqueduct also was washed clean away and disappeared completely from sight, being burned in an immense hole scoured out owing to the obstruction. The loss of this aqueduct was a most serious disaster as being situated not far from the headwork the irrigation of the greater part of the canal was completely closed involving great loss of revenue. A new aqueduct near the old site was immediately put in hand the design being entirely recast to provide for passing 140,000 cubic feet per second. The new design consists of fifteen spans of 60 feet the piers abutments and wings being founded on circular walls 20 feet in diameter sunk 20 feet below the bed of the stream. The structure is not provided with a floor owing to the great depth of the pier foundations which are regarded as being below the influence of any scour.

(10) The area of clear waterway in each span is 140 feet and there are fifteen spans—total 17100 square feet. This area has to pass 140,000 cubic feet, hence the velocity of current passing the bridge will be \(\frac{140,000}{17100} = 8 \frac{1}{2} \) feet per second. This immense velocity would speedily scour out the bed till equilibrium was produced. In the original project it was proposed to place a floor 10 feet below the normal bed level of the stream to allow for scour down to this level. This would enlarge the area of the waterway to 24,000 square feet and decrease the velocity to 6 feet per second. This velocity again is excessive and if the floor as proposed were actually constructed further scour might still occur in the unprotected river bed immediately below. This hypothesis is borne out by the recorded action of subsequent floods, one of which is stated to have scoured out a hole 30 feet deep below the works. From the above it is evident that the depth of pier foundations designed viz., 50 feet is in no way in excess of requirements. The alluvium is estimated to be 6 inches.

(11) With regard to the superstructure as the flood is as high as the bed level of the canal the arch and spandrels of the bridge openings can e
considerable obstruction to the waterway. This obstruction, exclusive of the piers is no less than 400 square feet in a water area of 1,600 feet, i.e., one-quarter of the area of the waterway above the normal bed level of the river. The obstruction due to the pier cut waters is not included in this estimate. This constriction of the passage is unavoidable in the arched type of superstructure in all cases where the flood level is higher than the crown of the arch, but the adoption of a steel girder superstructure for the aqueduct would very largely reduce the obstruction. In that case, the only obstruction below the water line would be the joists and longitudinals below the plate floor, these would not take up more than 2 feet in depth, and the proportionate obstruction would be only one twelfth of the normal waterway. However, under the peculiar circumstances of this particular case the relief thus afforded would be comparatively small. The congestion occurs mainly in the base of the water section, which is relieved by scour of the bed at each flood. Consequently the necessity of deep isolated foundations to the piers would still remain, as also the maddensibility of attempting to curb the bed scour by the imposition of a floor, even if sunk below the normal bed.

(12) In rivers, whose bed is composed of mucaceous sand of low specific gravity, as the Ganges Jumna, and the Kali Nadi in question, the bed level is being constantly altered by flood action, the water section automatically adjusting itself to varying discharge and velocity. During the prevalence of high floods the sandy bed is scoured out and carried along by the current, and this process continues until equilibrium is produced by the fall of the flood. Then with the consequent decrease in the velocity, the silt in suspension begins to deposit and fill up the bed, till eventually the normal low water bed level is again reached. This action takes place in all rivers, but is most marked in those which run in soil of a very light character. In bridging a river of this description the adoption of very deep isolated pier foundations, generally associated, in consequence of the expense of these foundations, with wide spans, is advisable, if practicable.*

(13) In the design under review the deep foundations are rightly provided but owing to the arched type of superstructure adopted, the spans have to be limited in width, resulting in the foundations of the piers being too close together for economy. If laid flat, the well foundations would form a continuous solid floor nearly 20 feet in depth. Consequently, in this and in all similar cases wider spans are a distinct economy, to effect which a steel girder superstructure is a necessity. Such an aqueduct would not cost more than a railway bridge of similar span and width, because the load carried although greater in amount than in the former case, is practically entirely dead load, and the aqueduct would probably be even a lighter structure than a railway bridge subject to a heavy vibrating live load. By adopting moderate spans of, say, 120 feet, the expense of pier foundations could be

* But in cases like that at Nadir, where the flow is syphoned under a considerable head of pressure the floor of the syphon barrels should be of masonry or concrete and the bed of the stream both up stream and down stream should be strongly protected with heavy stone riprap or concrete blocks supported by curtains of masonry walls or sheet piling.—ED
reduced by one half or nearly so, while on the other hand the safety of the work would be considerably increased by the lessened obstruction of the waterway and consequently diminished scour which would be decidedly a desideratum as a 30 feet deep scour previously alluded to can by no means be regarded with equanimity even with the 50 feet deep foundations adopted. The length of the aqueduct piers with a girder superstructure would have to be increased as the canal water section would be split up into several channel—each separated by the girders—the vertical box plates of the lower flanges of the latter being carried up to above full supply level to form the sides of the channels—the rest being open truss work. With eight spans of 120 feet the available waterway above normal bed would be $\frac{120 \times 22}{21.2}$ square feet. The velocity of passage before the bed is scourced out would then be $\frac{140,000}{21.2}$, 6.6 feet per second and at 10 feet lower level $\frac{140,000}{30.720} = 4\frac{1}{4}$ feet per second nearly. This allows of some increase in the width of the waterway as executed, which is evidently desirable.

(14) This increase in width must however be limited so as not greatly to exceed the normal width of the river channel. Scouring action in the bed of a river cannot be prevented by greatly widening the natural channel and lengthening the bridge. If this is done in the mistaken idea that the natural scour of the bed would cease owing to the provision of ample waterway laterally, the certain action of the first falling flood would be to deposit silt on both sides thus reducing the channel to its normal proportions. In future floods this lateral deposit would either remain undisturbed the channel reverting to its normal regimen—or else the current would bore it out on one side leaping deposit on the other thus causing great danger to the work from cross-currents. This property of rivers is well known and in the Punjab for this reason the bridges over several large rivers have had to be curtailed in length and the channel restricted by protective works into a straight comparatively narrow reach more in accordance with the normal channel.

(15) We will now proceed to review the details of this work. The arch is 3\frac{1}{2} feet thick at the crown or $42 \sqrt{7}$ increasing to 4 feet at the springing.

The thickness of the piers at springing is 7 feet or 116.5 or $\frac{5}{6}\frac{1}{2}$. As $\sqrt{5}$ the thickness would be 7 7 feet. The piers widen out in a curve to 9 feet at the base. The spandrels of the arches are lightened by a series of jack arches supported by the longitudinal piers shown in Figs. 3 and 3a. The parapets are corbelled out to form the roadways on either side. One provides a 12 feet cart track and the other a 6 feet wide footway. The corbeling and arching is ingeniously arranged but it takes up a great deal of

* By the rule ($l = r + 0.8 \sqrt{r}$) suggested in par (4) it would be 7 2 feet —Ep
room, necessitating a lengthening of the arch, piers and abutment, which could be reduced, if no regard were paid to architectural features.

The wings consist of a pair of curved landings ending in the canal earthen banks, which are here of semicircular shape to receive them. On the river side are two large water wings, curving a full quadrant and continued to well beyond the termination of the land wings, forming a very efficient protection to the flanks of the work.

The discharge of the canal is 4,100 cubic feet per second, which has a velocity of 4 feet per second in passing through the aqueduct, the curves narrowing the canal are not shown on the plan, the ordinary bed width of the canal is 230 feet. The banks on each side of the narrowest part are revetted, and enclose a puddle core of large dimensions.

(16) Fig. 4 contains the plans of the Gunneram Aqueduct over a branch of the River Gedaveri, taken from the 'Madras Irrigation Manual'. It has forty-nine spans of 40 feet, and the width between parapets is 23\frac{1}{2} feet, with a depth of water of 6\frac{1}{2} feet. The length of the structure, which is 2,250 feet between abutments, or nearly half a mile, is such that some slope is necessarily given to the canal bed, thus was originally made 24 inches, the spring line of the arches being built lower in each span. The surface level of canal now * shows only a slope of 7\frac{1}{2} inches (tide sections on AA and BB), in 2200 feet.

The river flood has risen as high as R L 23\frac{1}{2} feet, nearly 24 feet above bed and actually as high as the surface of the canal supply in the aqueduct (tide section on AA) †. This must have subjected the work to a very severe test and clearly proved the sufficiency of the shallow foundations adopted. The piers and abutments are built on circular wells 6 feet in diameter and 7 feet deep leaving an interval of 3 feet to floor level, which is occupied by the spreading bases of the piers. A continuous floor of pitched rubble 3 feet deep protected by a series of horizontal curtain walls founded on shallow wells, the whole 6 feet deep, is provided. The existence of this floor is what undoubtedly prevented the pier foundations from being undermined during the exceptional flood alluded to. Deep reinforced concrete sheet piling fore and aft of the floor would, however, make a better protection with mass concrete filled in between.

Owing to the great difference ‡ in the material of which the respective river beds are composed, no useful comparison between a work which is the exponent of shallow foundations and the Nadir Aqueduct can well be made. Under the conditions prevailing in the case of the Kali Nadi, shallow

* The fall was reduced from 24 inches to 6 inches in the year 1883 by raising the down stream end and the increased pressure at that end caused the accident of August 1884 — Ed.
† About 26 feet of section of the tidal influence of the sea and so has a deeper water cushion down stream. The real difference however between the two structures in point of stability was the substantial floor and bed protection at Gunneram and the practical absence of such at Nadir — Ed.
Codawri River Forty nine Spans of 40 feet
CHAPTER XI—CANAL CROSS DRAINAGE WORKS

All these have proved so successful in the Gommerum Aqueduct as to bring about a failure owing to the great velocity engendered and the numerical character of the material of the river bed unless they were fortified in a very long distance below the work and reinforced by sheet piling. Such a construction though it would interfere considerably with the course of the river would doubtless stand, but its cost would probably be equal to that of the deep foundations adopted in addition to which the point of damagous scour would only be transferred lower down the river bed.

(17) As regards the vaults and spandrel walls are remarkably slight being only 2 feet thick. The spandrels are however filled up solid with concrete to the level of the intrados of the arches. The widening of the vaults from the roadway is effected by external arches springing at a slighter level which level is horizontal throughout not on a falling incline as the case with the main arches. These arches are carried by stone columns built on the cut waters. This projection is 3 feet wide, allowing a rise width of 51 feet for the road way on either side. The thickness of the arches with crown is 2 feet on the centre for 45 to 70 feet wide at the spring line or 38 and widen out to 7 feet at bed level and to 10 feet at top of the well foundation. These appear to be in good proportion as being 0.32 feet. The section of the abutment is of very light due credit being given no doubt to the large buttresses in the 70 to and to the buttress effect of the wing walls.

These abutments will 40 feet spans of four fifths less sectional area than those of the Kasa Aqueduct with only 20 feet spans the great thickness of which has been already noticed in pi 8.

The disposition of the wings is peculiar. There are two large concave level crested wings which start from the outside of the abutments forming water wings inside which is the earth of the embankment while water is apparently contained by two inner walls which are not shown to have any foundation and may be just vertical walls of dry masonry.

This arrangement is probably due to there being no natural banks to the river the canal embankment itself forming the river within the bridge abutments and the run at right angles to the axis of the stream. Without a cross section at this point the exact arrangement of the junction of the earthen bank with the masonry of the bridges cannot be ascertained the plan on all being certainly defective. This work is contemporary or nearly so with the Salim Aqueduct on the Old Ganges Canal having been finished in 1892.

(18) The five contain the plans of the Kesarnipah Aqueduct on the Ellore Canal Madras. This work is rather remarkable in having a clear overfall of 12 feet in the bed of the drainage line, the design thus resolves itself into a bridged fall with the bed of the canal below that of the upper reach of the drainage line.*

* See note on previous page
† By formula $u = 1 + 0.8 \times 33 = 37$ feet — Ed.
Inss 6, 6a, 6b, 6c — Kao Nadi Syphon Aqueduct, Sön Canal
A depressed bed involving a so-called syphon has been avoided, which is always to be effected if practicable, as syphons are very liable to fill up with detritus and cause a breach in the canal. Another marked peculiarity in this design is that the crests of the parapet of the aqueduct are purposely kept only just above F.S.L., this is to enable surplus canal water to spill over either side of the aqueduct into the drain. The work then fills the rôle of an escape as well as an aqueduct.

The openings are 10 feet wide by 5\(\frac{1}{2}\) feet high, and are provided with inverts which take up a great deal of waterway and could well be dispensed with, the floor being made thicker, if necessary. There is little or no upward pressure on the roof, so that arched vaulting is suitable.

(19) Figs. 6, 6a and 6b are a representation of the Kao Nadi Syphon Aqueduct carrying drainage underneath the Son Canal. Both halves of the work are exactly similar. In order to save headway the tunnels are vaulted with flat ashlar slabs, which are held down by bolts passing through the piers and are covered with a layer of brickwork and concrete. A 10 feet roadway is provided on each side, consisting of slabs of stone resting on stone corbels.

(20) The flood level of the outside water is R.L. 330, that of the underside of the slab roof is 319. There is consequently a head of 11 feet of water acting upwards, tending to lift or break the roof when the canal is empty. When the canal is full and the drain empty, the weight of water pressing on the slabs is that due to 9\(\frac{1}{2}\) feet depth of water. The former pressure is the greater, but in calculating the thickness required for the slabs the weight of the slabs and the superimposed masonry and concrete is in their favour, whereas in the latter case it is against their resistance to rupture, so that the slabs are subjected to a uniform load of, say, 10 feet of water plus their own weight. Taking this at a specific gravity of 2\(\frac{3}{4}\) and the thickness being 2\(\frac{1}{2}\) feet the load is equivalent to a weight of 10 + (2\(\frac{1}{2}\) x 2\(\frac{1}{2}\)) = 16 feet of water, weighing \(\frac{1}{2}\) x 20 cwt = 9 cwt per square foot, the span, or L, being 6 feet, or 72 inches, the width B being 12 inches. To find the required depth using a factor of safety of 4, the breaking weight, or W, is 36 cwt per square foot. Then the following formula for strength of rectangular beams uniformly loaded, taken from 'Molesworth's Pocket Book,' p. 136, will state the case, viz.

\[
W = \frac{8KBH^2}{L}
\]

This involves two unknown quantities, D and K, of which K, i.e., the coefficient of rupture, must be obtained by experiment. This is easily done by having some beams, say 1 or 2 inches square, cut off the stone to be used, laid out on supports at a convenient distance apart, say 4 feet, and loaded in the centre by a hook passed over carrying a weighing platform on which weights are placed by degrees till the beam breaks. The weight of the platform, etc., should naturally be included in the count. Then K, or the modulus of rupture, will equal \(\frac{LH}{4BD^2}\) either in inch lbs. or in inch cwt. as H is taken in lbs. or cwt. In this case L is the
CHAPTER VI—CANAL CROSS DRAINAGE WORKS

When the beam operated on II the average breaking weight of several experiments and B and D the breadth and depth of the beam influenced I. Having thus obtained a reliable value for \(K \) it can be substituted in the formula II

\[
\frac{\text{SKB}}{I} = \frac{\text{II}}{\text{KB}}
\]

where II serve for II. The deduction I in the slab a foot wide in cents or lb. \(B \) being the breadth of feet 12 inches and \(I \) the length between the piers likewise in cent. \(D \) the required depth will be \(\sqrt{\frac{\text{II}}{\text{KB}}} \).

We have seen that the upward pressure below the slabs is that due to a 1 foot rise of water from this should be deducted the weight of the slab and immersed material equal to a corresponding weight of water per square foot of 21 \(\frac{21}{2} \) feet. The balance of load acting will then be 5 feet of water or \(\frac{5}{12} \) tons per square foot. This will have to be taken by the tie rods. Supposing the ties to be 5 feet apart the tension on each will be \(5 \times \frac{5}{12} \) or \(4 \) tons nearly (the length of the slabs being 6 feet) requiring a sectional area of 4 square inches or \(\frac{1}{4} \) inches diameter.

(21) In this example the levels of the inlet and outlet of the syphon are the same hence the water will be higher one side than the other to allow for the increased velocity which is generally allowed for in designing these works.

The discharge of the velocity through a syphon or culvert is determined by the use of the Chezy formula \(\frac{\text{II}}{\text{KB}} \times \text{KB} \) or \(\text{KB} \times \text{KB} \) using Kutters coefficients. In the latter expression \(K \) is the head \(I \) the length of the barrel from this \(K \) \(\text{II} \) \(\text{KB} \) \(K \text{II} \) \(\text{KB} \)

The value of \(e \) is obtained from tables of Kutters coefficients that of \(h \) being assumed and subsequently corrected. The coefficient is but slightly affected by the value of \(S \) the hydraulic slope but is mainly a function of \(K \) the hydraulic mean depth \(r \) of \(\frac{1}{P} \) \(c \) the wetted perimeter.

To the value of \(h \) thus obtained \(e \) being given must be added the loss of head at entry which is \(h = \left(\frac{21}{2} \right) \frac{v^2}{2g} \) or \(\text{KB} \).

In this the coefficient \(e \) is that pertaining to the velocity formula of a jet given in par (2) Chap. V and may be said to vary from 62 upwards. \(v \) is the velocity in the syphon barrel.

A selection of the proper coefficient will have to be made from the list in par (6) Chap. V modified by the shape of the barrel according to the table given in par (7) Thus for an oblong shaped vent a higher coefficient should be adopted than for a square one.

As a general rule 8 is an average value for \(e \) if the orifice is square.
\[
\left(\frac{I}{c_1} \right)^2 - I
\]
in this case would be 3625. If the width is twice the depth \(e \) will be increased according to par (7) Chap V by 103 or become 824 and the expression \(\left(\frac{I}{c_1} \right)^2 - I \) will be 456. A value of 5 is often adopted.

With velocity of approach taken into consideration the above formula should read approximately
\[
\left(\frac{I}{c_1} \right)^2 - I \right\} \frac{v^2}{2g} - \frac{v_1^2}{2g} \quad v_1 \text{ being the velocity of approach}
\]
The value of \(h \) to produce the velocity \(v \) in the syphon should also be reduced by that of the velocity of approach which not strictly accurate is sufficiently approximate for practical use.

(22) A practical example will now be worked out one barrel of the Kao Nadi Syphon Fig 6 being taken. The area of this is 36 feet the wetted perimeter 24 consequently \(R = 36 - 24 = 12 \). The velocity adopted will be 8 feet per second. In this case \(\frac{v^2}{2g} = \text{unity} \). The discharge will then be 36 \times 8 = 288 second feet. The length of barrel \(l \) is 104 feet. It is required to find the head to produce this velocity. As before we have
\[
h = \frac{h_1^2}{(100c)^2 + R}
\]

Here the value of \(c \) for \(R = 12 \) and \(S = 1 \) in 1000 with \(n \) taken at the usual value of 0.13 is according to Table XII Part II p 142 Hyd Manual is 1.249 say 1.25. The true value of \(S \) or of \(\frac{h}{l} \) in this case will be much in excess of 1 in 100 being more like 5 in 1000 but in Jackson's tables slopes steeper than 1 in 1000 are all accounted as of that slope. As the coefficient varies but slightly \(h \) will then be \(\frac{104 \times 64}{(1.25)^2 \times 12} - \frac{6.626}{234.375} = 283 \) feet.

To this we must add loss of head due to entry or
\[
\left(\frac{I}{c_1} \right)^2 - I \right\} \frac{v^2}{2g} - \frac{v_1^2}{2g} \quad v_1 \text{ being the velocity of approach}
\]

\[
h_1 = 5625 \times 1 = 562
\]
Total 84 feet.

The head due to velocity \(* \) of approach assumed at 3 feet per second will be 3 \times 0.1555 = 0.4 feet. If this be twice deducted the head required would be reduced from 84 to 76 feet. A somewhat easier method with same result is by use of formulas (23-26) part (67) Chap V

(23) In designing a syphon in which a natural stream or river is carried underneath a canal care must be taken that the channel below the work is of sufficient slope and sectional area to carry off the accumulation of water.

* Head due to velocity of approach does not enter into calculation of discharge through syphons as the dynamic head is changed into static head on change of direction of flow at the syphon -- Lo.
that is backed up above the work as for a time the channel will be called upon to carry a discharge in excess of the maximum flood discharge this involves the straightening or widening of the full channel.

(24) Referring again to Fig 6, the disposition of the wings and the narrowing of the waterway of the canal is shown in the general view plan (Fig 7). The land wings are usually curved on plan which in the case of the sketch is unduly suited for complete closure as the wing walls with sloping crests enclose the cistern at the head and tail of the syphon. The vertical wall at the exit end as a bad form as it hinders the natural approach of the water through the syphon necessitating its removal by excavation. The exit end should not be a dead wall but an easy incline as shown by the dotted lines in Fig 6. In modern designs this sloping approach is provided at the inlet end as well as the outlet of the syphon as exemplified in Fig 6 p 5 though it is not absolutely necessary at the upper end.

(25) The drawback to a slabbed culvert of this description is the limit it imposes on the span of the openings and the great expense of the ashlar slabs. A far better construction would be to form a flat concrete roof supported by rolled iron beams or one of reinforced concrete. The span could then easily be increased to 10 feet and the cost would be very much less. Fig 6 shows the construction.

The beams are 10 feet span and 5 feet apart. The weight on them will be equivalent to 15 feet of water or the total distributed load = 10 \times 5 \times 15 \times \frac{20}{36} = 417 \text{ cwt} the weight of 1 cubic foot of water being \frac{1}{4} of a ton. From the Table given in Mole's Pocket Book p 146 a beam 12\frac{1}{2} inches deep with 6 inch flanges and \frac{1}{2} inch web will safely carry this load.

Cross beams of small section will be laid along the centre of the span between each main girder thus dividing the platform into 5 feet squares. The total depth of the roof can be reduced from 2\frac{1}{2} feet to 1\frac{1}{2} feet giving an additional 1 foot in the headway of the sluices.

(27) A very recent instance of a design to pass a canal under a river is illustrated in Fig 6 of the Burra Bubba Syphon Freebairn Canal. This is a better design than any hitherto given. the main point in betterment being the double approach slope provided. This is obviously the best arrangement as it encourages the scour of material which in the case of the Kao Nadi syphon must be left in the barrels or in the approach cisterns, and require clearance possibly several times in the year. The greatest possible head acting on the roof of the barrel is about 6 feet. The counter-weight is only 2\frac{1}{2} feet depth of masonry at specific gravity 2 equivalent to 5\frac{1}{2} feet of water. This leaves a little over 1 foot of water pressure unbalanced, producing tension in the platform. In this calculation the drop in the water surface or hydraulic gradient is allowed for.
A peculiarity in this design is that the F.S.L. of the canal and high flood in the river are at the same level. On the canal side up stream the parapet of the superpassage is provided with vents 4 feet by 4 feet by which water can be allowed to fall into the canal syphon or else the canal can be allowed
parapets 400 feet. The arches had to be raised well above the canal bed on account of the exigencies of navigation and also of the level of the bank of the torrent. The 70 feet wide spans are therefore suitable. The thickness of the arches at crown is 45 feet. The thickness of the piers at 25 feet is 6 feet or 25. We have already seen (Chap IV, par. (12)) that a proportion of 1:8 giving a thickness of 5 feet is sufficient. The bottom width could be reduced at 8 feet the piers having either a straight or a curved batter as has been designed. The foundations which are probably on good soil are admirable (vide par. (11) Chap IV).

The abutment by the look of the section is of ample thickness: a good feature in a work of this magnitude and description. The actual incidence of the resultant line of pressures on the base has been graphically found, the method of working which has already been fully explained in Chap IV consists in first finding the centre of gravity of the half arch and its load of water; the latter reduced in depth as shown by the horizontal dotted line to an equivalent mass of masonry. This process is shown in Fig. 10 and the reciprocal funicular polygon above Fig. 10. The forces 1 and 2 are the areas of the two halves into which the half arch has been divided. Having found the centre of gravity of the half arch a horizontal line is drawn through the centre of the arch crown to intersect the vertical through this centre of gravity, and from the point thus found the line R is drawn in Fig. 10 through the centre of the arch at its springing till it intersects a vertical line through the centre of gravity of the abutment and its water load. In the force polygon (Fig. 10) the load line composed of the areas 1 and 2 is continued down to measure 300 square feet, the area of the abutment with its load of water and the line R is then drawn from the termination of 1 and 2 parallel to its reciprocal in Fig. 10a cutting the horizontal P at a point. From this point another line R 1 joining the termination of the vertical load line 1, 2 and 3 just obtained gives the final resultant R 1. This projected on the profile of the abutment in Fig. 10a from its proper starting point viz. the last intersection found cuts the base.

* By formula \(t = \frac{1}{1 + 0.84 t} \) we get a thickness of 5 feet. -- En
of the wall at a point some 5 feet within its heel. As no credit has been given to the weight of the earth backing with water above it the centre of pressure on the back is probably well within the middle third.

It might be mentioned that the calculation of the effect of batter on a retaining or returning wall is effected as follows—The wall should be regarded as having a base equal to its normal thickness plus the length of the batter but formed of two materials of different specific gravities the inner portion being of the proper specific gravity of the material and the part behind of a lighter specific gravity equivalent to that of a material spread over the space of the same weight as the solid buttress only. Thus supposing a wall is 6 feet thick and is provided with buttresses projecting 4 feet from the face and 6 feet apart i.e. at 10 feet intervals and let the specific gravity of the wall be 2 then the specific gravity of the 4 feet wide space behind will be \(\frac{2}{4} = 0.5 \) and the effective base width of the wall be 10 feet not 6 feet.

The disposition of the wings is generally similar to that usually adopted in aqueducts consisting of water wings as curved continuations of the faces of the abutments and splayed land wings which carry parapets in continuation of those in the aqueduct proper. These wings are shown in the plan over all (Fig. 10c). As a further precaution the ends of the land wings are connected by a cross wall at bed level which apparently goes down to the full depth of the foundations. The land wings being in solid ground are stepped up in foundation which is shown in the elevation Fig 10d. A photograph of this work is given in Fig. 10e.
Fig. 11 shows longitudinal and cross-section of the type design used for syphons crossing drainage, adopted in the Lower Chenab Canal. It will be noticed that the canal banks are carried right across the syphon with.
upward head of water below the crown is 6 feet. To balance this a thickness of roof of \(\frac{g}{\rho} \) is required. Taking the specific gravity of \(\rho \) as 18, the thickness should be \(\frac{g}{18} \) 5 feet. The actual average thickness of the arch and concrete above is about 41 feet. There is therefore tension in the masonry equivalent to the weight of a layer of brickwork etc. of 1 foot in thickness which in lbs is \(\frac{1}{2} \times 18 \times 62.4 = 56 \) lbs per square foot. No doubt the cohesion of the mortar in the concrete above is more than sufficient to withstand this pressure, but in all masonry works, particularly those in connection with water, any tension should be avoided.

The general arrangements in this design are simple and excellent. The floor is only 2 feet thick and the whole is made entirely of concrete. The proportionally wide spans are also a good point, as the wider they are the
higher the coefficient of discharge will become. The double slope is a good arrangement for drainage lines as it gives an impetus to the water and tends to carry detritus through the culvert. A direct overfall on the upstream side on the other hand absorbs a great deal of the velocity of approach. The form of vertical drop above and slope below is suitable where a canal is taken under a drainage line as being more economical.
The thickness of the roof is 2 metres or 6½ feet, which is sufficient for a head of 1½ feet. The floor level of the drain is not shown, but from the height of the banks it is probably about 1½ feet at least. That of the intrados of the culvert arch is 3½ feet, the head then will be 6½ metres or 21½ feet. The syphon is evidently not designed to run full with the canal empty, as it undoubtedly should be. This state of things is mentioned by Sir Wm. Willcocks in Egyptian Irrigation many of the older works in Lower Egypt having been designed on the hypothesis that the canals would never run dry & the supply would never be cut off from the head. Now, however, that head regulation is possible, these works are not equal to the pressure brought upon them and thus doubtless is one of them.

The slope of the earthen banks is carried through the work. The distance apart of the parapets of the aqueduct is no less than 350 feet and it carries 20 feet of water.

(35) Fig 16 is a type section of a syphon under a distributor from the "Madras Irrigation Manual". As will be seen both earthen banks are carried entire across the syphon.

(37) In Egypt of late years wrought iron pipes have been used for both aqueducts and syphons. The following is a description of them from Egyptian Irrigation:

- Syphons of the kind shown in Fig. 13 are objectionable as tending to silt up. To
- full of water. Surface through them is slight, and consequently the velocity is not
- Reinforced metal tubes. 10 or 12 feet in diameter would be appropriate in case like this.

This is a natural text representation of the document.
They are generally constructed of $\frac{1}{2}$ inch sheet iron, butt jointed, stiffened with angle irons at every alternate joint if over 12 feet in circumference, and lap jointed if under 12 feet. Since the sheets in the market are 8 feet by 4 feet, or 6 feet by 3 feet, the pipes are always constructed with their circumference some multiple of the length or width, so that there may be no cutting of plates. The pipes are sometimes laid on a bed of concrete, varying from 1 metre to 25 centimetres in thickness, according to the quality of the soil, or they are laid on the hard clay soil and well pitched round with clay balls. Where the pipes are used as aqueducts they are generally supported on wooden trestles. The great advantage of using wrought-iron pipes is that they can easily be transported, they do not need expensive supervision during construction, and can be put together so rapidly that the cost and trouble of a diversion for the canal during the time of construction is avoided. These pipes can be closed at the ends and floated to their destination. By dredging the foundations where they have to be laid they can be floated over the site and then sunk without shutting the canal head.

A pipe of 16 feet circumference will discharge 300 cubic feet per second, with a head of 2 metres or 6\$Foot\$ feet, and 156 cubic feet with a head of half a metre or 1 6 feet. One of 12 feet circumference, 180 cubic feet per second, with a head of 2 metres, and 87 cubic feet with a head of half a metre.
(38) Where the drainage is slight, outlets can be provided they simply consist of a small fall or pitched rapid protected by flank walls which conducts the drainage water into the canal. The floor and banks of the latter being pitched all round to prevent damage. If the outlet occurs at the roadway bank, it has to be bridged. A level crossing consists of an open inlet on the side of the road. A regulating bridge across the canal and another at right angles across the exit of the trench which is generally provided with a fall to expedite the speedy removal of the unwelcome guest. It is very essential that quick-acting falling gates be supplied to the outlet bridge, draw gates would be much too slow in manipulation. The balanced pivoted gates recommended for the Ko-beha escape would, it is believed, answer admirably for such a purpose.

(39) Cases in which the passage of drainage across a canal is beset with the following difficulties are enumerated below:

(1) The drainage is too extensive to be wholly admitted into the canal.
(2) It cannot be taken underneath in a syphon drain owing to the presence of the backwater of the parent river when in flood, which comes up to the very canal bank, hindering the free discharge.
(3) It thus must be disposed of by a superpassage, but this involves the formation of a large deep reservoir on one side of the canal, which has to fill up before sufficient elevation is attained to admit of surplus passing at a high level over the canal.

This problem was satisfactorily solved in the case of the Ali Superpassage and concomitant works in the third or fourth mile of the Agra Canal. The works constructed consisted of firstly a solid embankment on the upper side of the canal which crossed a large depression, secondly a
water tower built some way off the canal in the depression provided with external sluice openings at different levels thirdly a culvert which connected the base of the tower with an inlet into the canal itself lastly an iron girder superpassage with a masonry fall in the further (river side) bank. This arrangement has answered well. When the depression fills up to a moderate extent all its water can be gradually drawn off through the tower into the canal. However as happens not annually but occasionally the tributary streams bring down so much water as to quite fill the reservoir the surplus is then disposed of automatically by passing over the superpassage into the river. When the crisis of the flood is over the deep reservoir

![Diagram](image)

Fig. 18a—Tharpangung Aqueduct

can be gradually tapped into the canal by means of the water tower and inlet culvert. Unfortunately no plans are available.

(40) The subject of this chapter cannot be considered as exhausted without the insertion of the plans of the Tharpangung so called aqueduct. Figs. 18 and 18a contain the plan of the remarkable work which is really a combined syphon and level crossing. The work was originally designed as a syphon to carry a hill torrent underneath the Mandalay Canal. During its construction an immense flood came down of an estimated discharge of 57,000 second feet. The previously estimated flood discharge on which the design of the syphon was based amounted to 24,000 second feet consequently the design had to be remodelled. In effecting this it was wisely decided to have the syphon as originally projected but to supplement it by a level crossing. The parapets of the canal superpassage were removed for 300 feet and a series of wooden falling shutters substituted. There are sixty pairs of the each being 5 feet wide by 7 feet high. The width of the canal here is 46 feet. Each pair is connected across the canal by a wire rope which passes over brackets fixed above the shutters and side tension rods prevent the shutters from falling onwards. The tension rods on the upstream side are held in position by a set go gear and when released both
CHAPTER XI—CANAL CROSS DRAINAGE WORKS

The tiers fall one towards and one outwards allowing the flood to pass over them. The canal head must previously be closed and the water emptied all the way to act as a cushion.

The arrangement has been twice tested and found to act well. As a precedent of novel construction is always most useful as it enables similar works to be designed with confidence and with possible economy in the material.

The general alignment of the wings (Fig. 18) appears to be excellent. There are the pedestrian outer wings affording a good approach to the syphon while the splayed inner wings connect the canal banks with the walls of the approach. A concrete wall is introduced here with the object of all the level being to be continued between it and the canal wing up to the bottom. The head of water acting below the soffit of the arch is 12 feet as at which is 40 depth of arch and pitching equivalent to 7 feet of water consequent holding down bolts have been inserted to resist the unbalanced hydrostatic pressure of 1 foot at the crown. The sloping approaches to the syphon are good and worthy of imitation.

(41) A view is given of the Dhamuri Level Crossing on the old Ganges Canal in Fig. 19 for which we are indebted to Mr. Buckley. There is another level crossing of the Sond River or Torrent across the Western Jumna Canal at Dadupur. This is still working well though built originally nearly a century ago of very simple design.

Fig. 19—Dhamuri Level Crossing, Ganges Canal

(In the foreground a barrage across the torrent in the background a barrage across the canal)
(42) Several important level crossings were built on the Upper Jhelum Canal (of the Punjab Triple Canal Project) during the period 1905–1913. They all consist of barrages built across the torrents, with spans of 40 feet, controlled by gates of the ‘Stoney’ live-roller pattern, the canal waterway being similarly controlled with gates of 25 foot span. The gates have to be very rapid in their working as the torrents are liable to rise in floods of high intensity within half an hour of the commencement of heavy rainfall.

(43) But the most important level crossing hitherto built has been that across the River Ravi, at Balloki forty-five miles down stream of Lahore. The Upper Chenab Canal, of the Triple Canal Project, tails into the river on one side just above the barrage whilst the Lower Bari Doab Canal of the same Project, off-takes from the other side of the river above, the barrage. This level crossing has been built instead of the Ravi Syphon, which had been originally designed but over whose design and estimate of cost much difference of opinion arose. The Ravi Level Crossing, at Balloki, was completed in the year 1913.

EDITOR’S NOTES.

(40) The Kali Nadi Aqueduct at Nadrai—The Lower Ganges Canal, at Mile 34, passes over and across the Kali Nadi stream by an aqueduct at Nadrai. When this work was being first designed by Captain Jeffreys in 1871, he supposed that the maximum flood of the stream at that point would be 26,400 cusecs, but he proposed to allow a waterway sufficient for 36,000 cusecs, at the rate of 12 per square mile over its catchment area reckoned at 3,025 square miles. To pass this with a mean velocity of 10 feet per second he proposed to allow seven spans of 35 feet, 15 feet high to springing of arches. Later, he noticed that half a mile below the proposed site of the aqueduct, there was an old bridge across the Kali Nadi, which had been in existence for at least 100 years. This bridge had a total waterway of only 1,146 square feet, and the flood marks on it showed that it had passed floods with a maximum ponding up of 15 feet. From the formula
\[D = ca\sqrt{2gh} \]
where \(c = 75 \times 1146 \times 8\sqrt{15} \), he reckoned that the maximum flood would be 8,450 cusecs, with a mean velocity of 7.33 feet per second. There was another bridge thirty miles up stream of Nadrai, from flood marks on which Jeffreys reckoned that the maximum flood had been 4,220 cusecs from a catchment area of 1,556 square miles above that point. These data led him to conclude that the maximum flood of Nadrai would not exceed 9,500 cusecs, at the rate of 3.66 per square mile of a catchment area of 2,593 square miles. Doubling this, for safety, he proposed to allow for a maximum flood of 18,000 cusecs. The aqueduct was designed with a lower waterway of 5 spans of 35 feet, as shown in Fig 20, or \(633 \times 5 = 3,165 \) square feet.

Captain Jeffreys recognised that this allowance of waterway was open to criticism, but he explained "I cannot, with this 'Mogul' bridge of more than a century old staring me in the face, recommend a greater provision than that.

And (.)

the design, with the
Although the flood volumes given by Major Jeffreys are perplexingly small yet there seems no reason to doubt their accuracy.

The work was built accordingly the masonry channel for the canal being made 102 feet wide to discharge 5,374 cusecs with a water depth of 0.4 and a mean velocity of 3 feet per second.

The abutments and piers of the aqueduct were founded on masonry wells sunk to a depth of 10 feet (533.5 - 514.5) below stream bed but the curtains were sunk 10 feet deep only the foundation soil being sand. There seems to have been very little protection of the stream bed. Under the spans there was a dished floor of block kankar riprap grouted with lime but little else and block kankar is a weak material incapable of resisting the erosion of high velocity currents or the pressures of an inverted arch. In October 1884 a flood occurred which rose to 557 up stream and 553.5 down stream of the aqueduct and the local executive engineer (Mr W Good) estimated its maximum intensity at 37,000 cusecs with mean velocity 11.7.
This flood washed out the block-kankar floor and undermined the foundations of the fourth pier from the right, which collapsed, bringing down the arches which rested on it. Had there been suitable protection to floor and stream bed this accident would probably not have occurred.

Nine months later another great flood occurred, and this time the aqueduct, which had meanwhile been repaired, was completely destroyed. The flood began rising on the afternoon of July 16th, 1885. According to Mr. Good, who eye-witnessed the flood, the water levels were 559 feet upstream and 5532 feet downstream of the aqueduct at 4:30 a.m. on the 17th, down to which time no damage had occurred. At this time the mean velocity through the barrel was about 16 feet per second and the discharge about 50,000 cusecs. "Immediately after this the upstream level rose 4 feet in one wave, and part of the old revetment over Arch No. 1 fell in." This sudden rise of upstream water cannot have been due to increase of flood, and we may infer therefore that it was due to obstruction of waterway by the collapsed masonry.

At 8 a.m. the upstream level was 567.5 (within 0.5 foot of the top of the new right revetment wall) and surged over it in waves 10 to 15 feet high, and then the whole of this revetment and the rest of the arches collapsed. At 9:30 a.m. the only vestige of the aqueduct was the mass of the left revetment. The water ran smoothly between the revetments. The water downstream of the aqueduct was in waves 20 feet high and at intervals of 100 feet, and laterally in a formidable swirl towards the left bank. Assuming that the condition of flow was that over a submerged weir with sill at level 532 feet, and 200 feet long, and allowing a deduction of 1/4 for obstruction by the fallen masonry, Mr. Good calculated that the discharge at 9:30 a.m. was 94,000 cusecs. "At 3 p.m. the left revetment, which had so long blocked the waterway, fell in, and the land wing followed. By this time the flood had cut a channel 100 feet wide at the back of the left abutment, through the canal embankment, and another 50 feet wide on the right. The flood reached its maximum level at 3:45 p.m., when the upstream water level was 569 on the right bank." And Mr. Good reckoned the discharge of this time to be 121,000 cusecs. Thereafter the upstream level sank, but the downstream level continued to rise till 5 p.m., when it was 562.5. This suggests that the high upstream levels prior to 4 p.m. may have been due to invisible obstructions rather than to magnitude of discharge.

The Superintending Engineer, Major Home, reckoned the stream as flowing over a broad-crested weir with sill at 532 feet, and with waterway 275 feet wide (including lateral breaches) reckoned the flood to have amounted to 132,000 cusecs, and suggested re-building the aqueduct with eleven spans of 60 feet, to discharge with mean velocity = 8.

The Chief Engineer, Colonel Forbes, suggested thirteen spans of 60 feet, but Colonel Brownlow, who was now Inspector General of Irrigation, thought it would not be safe to build with less than fifteen spans of 60, on the ground that the flood might well have been as high as 140,000 cusecs.

After the accident to the old aqueduct in 1884, Colonel Brownlow had been hard put to it to explain why he had designed it to discharge only 18,000 cusecs, and we can well understand that the total destruction of the work by a still greater flood in 1885, whilst he was still apologising, decided him to think of "safety first," and nothing else that mattered.
At any rate the new aqueduct was built with fifteen spans of 60 feet having a total waterway of 10,000 square feet between stream bed and arch seats to discharge 140,000 cusecs. The design assumes that the high flood level will be at the same level as the canal bed (R.I. 525) that the waterway will increase through bed scour and that the influx will be only 6 inches. This would seem to be an error seeing that the great flood of 1885 rose to 592.5 down stream of the old aqueduct. The \(V_a \) will be able to discharge only about 50,000 cusecs up to level of springing of arches (R.I. 54), as an open channel. As it rises above that level the mode of discharge will change from that of open flow to that of pipe flow and although the earthen bed will be free to erosion the rate of enlargement of waterway by such erosion is an uncertain problem whilst as soon as syphoning occurs a rapid increase of influx to create velocity head and entry head \((1.5 \frac{1}{2}) \) will be on the cards and this added to a possible H.I.L of 562.5 down stream of the work may cause trouble up stream. The piers and abutments of the new aqueduct have been founded on masonry wells sunk to a depth of 50 feet below stream bed. The wisdom of this may be questioned seeing that a very substantial stratum of clay exists at a depth of 30 feet only below stream bed. As matters stand the foundations are composed of 228 wells with an aggregate vertical length of 26.019 feet or nearly 3 miles. By founding them on the clay at least one mile in length of wells might have been saved but the depth of 50 feet was arrived at as...
the least at which, it was supposed that, under the most unfavourable circumstances, the pressure at base would not exceed the limit of 4 tons per square foot. Colonel Brownlow advised fixing the limit so low as 2½ tons per square foot. If the old aqueduct that was destroyed in 1885 had been designed as Colonel Sir Arthur Cotton designed the Gunneram Aqueduct on the River Godavari in 1851, i.e., as an aqueduct sluice, with floor and apron and strong bed protection up and down stream, it might have remained intact, in spite of the great flood of 1855, even though the earthen embankments of the canal were breached through to right and left of it. Not that one would deliberately design an aqueduct sluice, for choice, to discharge great floods by breach and overflow, but the new Nadrai Aqueduct would probably have been as efficient, if not more so, if designed with only ten spans instead of fifteen.

(R) The Gunneram Aqueduct on the Godavari. — The Gunneram Aqueduct carries the canal of that name (or Naggaram) across the Vanteyam branch of the Godavari Delta (Fig 23). It was designed in the year 1851 and built early in 1852. Colonel (afterwards General Sir) Arthur Cotton, describing the design in 1851, wrote: "This work is not a simple aqueduct, but rather an aqueduct sluice. That is, the water, in floods, will rise above the crown of the arches. The work is planned, accordingly, as a sluice, i.e., with floor and apron. The obstruction offered by it is about the same as that of the Ancut at Dowlaushwaram in the highest floods, i.e., the proportion of waterway to the whole section of the river at that point is about the same as the corresponding proportion at the Ancut. I have allowed for a front apron 10 yards broad, and a rear apron of 20 yards, supported by lines of wells along its whole length, with some loose stone also below them. There will be a floor of large packed stone also under the arches, with a line of wells along the down stream side from pier to pier."

Colonel Baird Smith inspected the aqueduct in 1853, and wrote thus: There are forty-nine arches of 40 feet. Abutments and piers rest on wells 5½ feet in diameter, 8 feet deep, in sand. Over the well tops is a floor, which, in twenty-five arches is of concrete. The floor is one foot thick and supported by five rows of wells 4 feet in diameter, sunk 3 feet in sand. The whole structure is of brickwork in excellent cement, the bricks being of the extraordinary size 18 inches by 6 inches by 3 inches, with a small hole 1 inch in diameter, through the middle, to facilitate baking. The whole work was completed in three months from date of commencement of construction by Lieut. Haig, R.E.

Within a few months (or possibly weeks) after the aqueduct was completed, a flood rose not less than 5 or 6 feet over the level of the tops of the parapets, burying the whole structure in water. The height of this flood must have been about 30 feet. The sectional area of such a flood, as provided by Nature, is approximately 72,000 feet, that provided by the engineers is 30,000.

Supposing the mean velocity of the river flood had been from 6 to 8 feet per second at some distance from the aqueduct, this would have increased to from 15 to 20 feet per second past the obstruction, with an influx from 3 to 5 feet, but owing to the work having been designed as a syphon, to resist such velocities, no harm resulted.

Colonel Cotton wrote in 1852: "That a single officer, with two or three overseers, should have managed 5,000 workmen with the help of only three or
for the cost workmen is one of the most important fact in the met.

In 1884 the longitudinal slope of the canal trench was set at 1 to 1.3 feet to 8.1 inches only, and in this connection the side walls at the upstream end were raised 3.75 feet higher. They proved too weak and August 1884 a 100 feet length of the well was pushed over by heavy pressure. The Madras engineers replaced this with a wooden arched within ten days and carried on niling.

In October 1891 an extraordinary flood submerged the whole of it. Colonel Howley described the incident thus: The flood of October went right over this fine old work about 18 inches deep in the middle to fourteen at the ends. The greatest difference of river water level above and below the work was 24 feet. The only damage to the superstructure was washing away of some of the surface gravel and concrete of the right tow path and slight injury to the wooden railings. The rough stone flooring in the river bed below the work on the left side was somewhat disturbed. Sheet piling protection is necessary and the provision of a reserve of loose stone. The flooring put down in the last three years along the front of the aqueduct has added much to its safety.

This flooring was of concrete 2.5 feet thick, 15 feet wide, topped by a rubble masonry wall 2.5 feet 3 feet, founded on wells 5 feet square and deep.
CHAPTER XII

RESERVOIRS AND TANKS

(1) When water is impounded for purposes of irrigation in a reservoir, this can either be effected by embanking a depression, which receives the run off of the rainfall from a catchment area, or else a defined river or stream is held up by a masonry dam or weir, or by an earthen bank. In the former case there are innumerable examples in the small tanks that have been constructed in eastern countries where the slope of the ground is favourable. Of the latter there are also many examples on a very large scale for instance the Bhatgarh Reservoir in Bombay, the Penyar project in the Madras Presidency, and the Assuan Dam in Upper Egypt. These three works have already been referred to in Chap. II, which treats of the sections of dams. The large storage reservoirs in the United States are too numerous to be catalogued. The Salt River Reservoir will impound 1½ million acre-feet a record quantity.

(2) In designing a reservoir, the first point requiring definite statistics is the maximum and minimum discharge to be expected from the catchment area. The former for the purpose of designing the works for the disposal of the surplus water which passes through the reservoir after filling the latter to its full capacity, that is, the required length of waste weir or bye-wash or the discharging capacity of waste sluices, if such be adopted. The second determines the capacity of the reservoir, which naturally must be such that it will fill in ordinary years, and on this depends the area of land which it is capable of irrigating and the revenue which may be expected to accrue.

The subject of maximum discharge from catchment areas has already been investigated in Chap. V, the minimum may be assumed as half the maximum, i.e., with a maximum run off of ½ of the rainfall, the minimum may be taken as ⅛ or ⅙ of the rainfall. There are of course many instances of small rain fed tanks which naturally will not fill in a year of drought, though they may do excellent irrigation in ordinary years, so that in most cases the average rainfall has to be considered not the absolute minimum. A tank however, situated on a stream which never fails to run intermittently during the rainy season, even in a year of drought, is naturally more valuable than one dependent entirely on local rain, which may be very scanty in some years.

The ideal site for a reservoir dam is one across a narrow gorge in a stream or drainag line which above this point widens out in a long level and broad depression. The discharge of the catchment may be such that the tank will fill more than once during the season. According to the "Madras Manual of Irrigation," the irrigating capacity of a tank thus supplied can be reckoned as ⅛ of its actual capacity.
CHAPTER VII—RESERVOIRS AND TANKS

(3) The actual capacity of a tank is the cubic contents of the water impounded between full tank level or 1 1 1 (Full Supply Level) and that of the sill of the lowest irrigating line. One of the first points requiring attention after selecting the site for a proposed reservoir is the determination of its storage capacity up to different proposed levels of escape i.e. to 1 1 1. For this purpose marks should be fixed at differences of level of about 5 feet or 10 feet apart on convenient short lines of section the contours of these levels should then be marked out and surveyed all round the basin in order to obtain the perimeters and areas at each contour from these the contents of each basin can be calculated and the contents up to any contour. The same result can be obtained by a series of longitudinal and transverse sections taken up to the heights of the various contour levels. The former should be directed in conformity with the axes or axes of the figure of the basin and transverse sections at right angles to them. Should a winding river channel or depression form part of the basin it is often more convenient and correct to estimate its contents independently and add it in afterwards.

(4) The formulas in use for obtaining the contents or capacity from the horizontal contour areas are as follows—

With two contour arcs only viz. 1 1 1 1. at a common vertical distance apart (d) The contents is \(\frac{1}{3}d (l_1 + l_2 + \sqrt{l_1 l_2}) \)

If there be three equidistant horizontal sections the contents is \(\frac{1}{3}d (l_1 + 4A_2 - 2) \)

If there be any even number (n) of equidistant horizontal sections \(A_1 A_2 \) etc. up to \(l_n \) at a common distance \(d \) the contents is \(d (\frac{1}{2}A_1 + A_2 + \text{etc} = \frac{1}{n} \frac{1}{n} - \frac{1}{n} \))

The capacity of the reservoir being thus estimated the amount of supply that can be expected annually from the catchment area can be obtained from the Tables given in Parts I and II of Table II and Part I Table III. Jackson's Hydraulic Manual where also some excellent practical examples of their application are given or else the run off can be obtained from Tables given in Chap V of this work.

The irrigating capacity of tanks and duty of water impounded varies naturally with the amount of absorption and evaporation. In the Madras Presidency where the system of irrigation from tanks and reservoirs is very extensive the following is the quantity per irrigated acre required * to be stored to bring the crop to perfection—

<table>
<thead>
<tr>
<th>Crop Period</th>
<th>Capacity (cubic feet)</th>
<th>Capacity (acre feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monsoon Rice Crop</td>
<td>216,000</td>
<td>5 nearly</td>
</tr>
<tr>
<td>Cold Weather Rice Crop</td>
<td>175,000</td>
<td>4</td>
</tr>
<tr>
<td>No use if stored for next year</td>
<td>540,000</td>
<td>12.4</td>
</tr>
</tbody>
</table>
The reckoning of artificial supply includes all loss from evaporation and absorption in the reservoir and the irrigating channels. This estimate, though rough, is useful as a guide. For cold weather crops other than rice, such as wheat, etc., the storage in acre-feet will be about 2. The loss from evaporation varies with the climate of the country in which the reservoir is situated. In Upper Egypt, the maximum is taken at 39 inch per day, and that in India in the hottest and driest months may be anything between 0.5 inch and 1 inch, whilst it may be only 0.3 inch in the coldest month. The annual loss by absorption varies considerably according to the nature of the bed of the tank, and may be taken, according to “The Irrigation Works of India,” at one-half the yearly loss by evaporation.

From experiments made in tanks in Rajputana, which has a dry, hot climate, the average daily loss from both causes was—October to March, 20, April to June, 47, and July to September, 41 inch per diem.

This is equivalent to a total annual loss in depth of 6.15 feet from evaporation and 3.62 from absorption, giving a total of 9.77 feet.

In Madras a continuous run of 1 cubic foot of water will irrigate 66.3 acres of rice and double that amount of dry crops. In new tanks, projects the duty per cubic foot per second is sometimes taken as—rice 50, dry crops 100 acres, inclusive of losses from evaporation and absorption.

(5) Whether a masonry dam or earthen bank is adopted to impound the water depends upon the local circumstances and comparative cost. The usual limit in height of earthen banks used to be considered as 60 feet, but this has been greatly exceeded in some reservoirs in Bombay, where the Waghad Reservoir embankment is 95 feet high, and another is projected of a maximum height of 110 feet. In England an embankment 125 feet high has been successfully constructed. Now that the new system termed hydraulic fill has come into general use there appears to be absolutely no limit to height adopted. The projected Ogawa Dam in Japan is to be 330 feet in height, exceeding even that of the Shoshone arched masonry dam which now holds the record at 310 feet.

The works connected with a tank or reservoir consist of (1) the embankment or dam, (2) the waste weir, by-wash or escape sluices for the disposal of surplus water, and (3) the outlet sluices for irrigation.

(1) Embankments

(6) The common practice in Europe is to construct a puddle core in the centre of an embankment, the remainder of the material being composed of earth, gravel and stones; in this case the imperviousness of the dam to leakage is entirely dependent on the puddle core.

Where suitable earth is not obtainable to form the mass of the embankment, the adoption of a puddle core is obligatory, but where good soil is available the puddle core for embankments of, say, 50 feet in height is

* But it must be borne in mind that this water supply is supplemented by rainfall as noted — Ed.
not necessary. In India the use of a puddle core is generally limited to very large reservoirs, but even in the case of high banks it is often entirely dispensed with. A thoroughly consolidated homogeneous embankment of earth is undoubtedly preferable to one of infirm material rendered watertight by a puddle wall. The large Waghad tank embankment, a section of

![Diagram](image)

Fig. 1—Waghad Tank Embankment

which is shown in Fig 1, was constructed with rammed layers of moist earth without a puddle core.

(7) Unless clay soil is not easily obtainable near the site of the embankment, this adoption of a puddle core for small or large depths of water is not absolutely essential. In forming an embankment without a puddle core, it is obligatory that the earth be at least damp and consolidated in layers by heavy rollers. The whole mass can be made of wet earth, i.e., practically puddled, if water is available. The method of procedure is as follows:—The bottom 10 feet of the base of the bank should first be thrown up and a temporary cut made in the solid ground or rock at a lower level to pass off waste water, or else the masonry outlet culverts can be first built and adapted for this purpose. The work should then lie in abeyance until water has collected in the basin behind the bank. The surface of the banks should then be divided into shallow basins about 12 inches deep by narrow partition walls of earth. Into these enclosures the water should be pumped or baled up from the reservoir. As soon as a series of these shallow basins are full of water, the earth is thrown in to fill them up level with the top of
the partition walls, after which another series of chequers are formed on top and again watered. While one part is being filled up, another is being watered or chequered so that there is no intermission in the earth carrying. When the embankment is thus raised the level of the bed of the escape cut can likewise be raised either by partially filling it up or cutting a new channel at a higher level so as to allow the water to rise to a further height behind the bank. By the means thus described, each layer of earth is thoroughly soaked and clods dissolved so that no ramming or clot breaking is requisite, and the new layer is further consolidated by having 6 or 9 inches of water laid over it, the result being that the whole bank is composed of wet earth devoid of air spaces, which are inseparable if dry earth is used, no matter how much it may be consolidated by rolling or ramming. Consequently when the bank fills, there can be no settlement whatever of the embankment. If during this process the bank shows signs of supersaturation by bulging, the work should be suspended at this part for a day or two until matters adjust themselves and the layer of water subsequently reduced in depth.

The author has constructed several embankments on this system, and not the least sign of settlement ever appeared in the bank thus formed when fully tested. This system is probably best applicable where coolie labour is employed and earth carried on the head in baskets when it can be deposited wherever required.

In many cases where stiff clay is the material, it is customary to mix a certain proportion of fine gravel with the clay, as gravelly soil is naturally far more watertight than pure clay, unless the latter is kept continually moist. This can be done by arranging a certain proportion of the carriers to convey gravel, so that the mixing takes place automatically. In the United States the universal practice was to construct the core walls of masonry but they are now quite discredited. The embankments there are thrown up in layers of damp earth and rolled by heavy rollers. Now, however, the hydraulic method is superseding the ordinary system.

(8) Undoubtedly by far the best method of forming reservoir embankments is that of 'hydraulic fill.' By this means immense embankments not only for reservoirs but for high railway banks, have been constructed in America.

The hydraulic fill dam is now recognised as the most economical method of handling earth as well as by far the only absolutely satisfactory means of forming the earth of a dam by alluvial deposit from a current of water, so as to make it more solid impervious and freer from liability to unequal settlement than is possible by any other artificial process. Powerful jets of water directed against a cliff or hillside disintegrate the soil, which is carried forward by the same water in rough wooden aqueducts, 2 or 3 feet wide and deep to the site of the proposed dam. There the aqueduct bifurcates into two channels which are aligned one along the up stream side, and the other along the down stream side of the dam, and parallel to its axis. There the water is discharged from sluices in the sides of the channels. Naturally the heaviest detritus is deposited under the aqueducts, whilst the lighter matter
is carried further and the streams from the two channels meet on the central axis of the dam where their deposits consist of the finest impermeable puddle-clay which constitutes the core of the dam. Requisite conditions are:

1. The existence of abnormally high water at a sufficient elevation to form a sluice head that is to afford a steep enough slope for the wooden channels which convey the sluice material on to the embankment.

2. An abundant deposit of suitable mixed soil at a high level.

The volume of water required is from 5 to 20 cubic feet per second. One cubic foot per second will remove 5 to 200 cubic yards in 24 hours. The mixed material is a mixture of soil, clay, sand and gravel of all sizes. Stones 1 to 2 lb. weight can be carried through the sluicing channels of 6 in. with a current of thick clay and sand.

In the process of hydraulicicking, the slopes of course material are first formed and are always kept higher than the interior. By means of check boards and sluice flumes, the heavier material can always be diverted to the slope, while the lighter, graduated gravel, sand, and mud is kept in the centre. The open box or stone and gravel deposited outside allows of the drainage and gradual desiccation of the clay puddle which forms the centre portion of the dam.

9. The material is either loosened by a hydraulic jet from a Giant playing against the bank, which is the best method or if pressure is not available, the ground can be loosened by plough or by hand and then sluiced.

Fig. 2 is a photograph of a hydraulic monitor. The giant is moved round in any desired position by a deflecting nozzle by which device the force of the issuing jet turns the machine on its pivot so that a child could operate it.

A long and detailed description of hydraulicicking with many photographic illustrations is given in Reservoirs for Irrigation etc. by J. D.
Schuyler an invaluable up to date book which should be consulted on this subject.

Wherever earth at a higher level than the dam crest is not available low level borrow pits can be excavated by the jet and pumped up to a commanding level whence they are conveyed on to the dam by flumes.

In such cases the outer casing will have to be made of rock fill not by hydraulicking Special arrangements require to be made to drain the internal mass pipes being inserted in the stone casing with the object of removing the water and at the same time retaining the mud in suspension.

The cost of hydraulic filling is from 3½ to 6 cents per cubic yard equivalent to 12½ or 3d in English money or from Rs 4 As 6 to Rs 7 As 8 per 1,000 cubic feet in Indian currency.

(10) A few modern examples of earthen embankments whether made up by ordinary process or by hydraulicking alone or by rock fill or stone walling backed by hydraulic fill will now be given. Fig. 3 is a section of the Necaxa Dam in Mexico. It is one of a series of three constructed for the Mexican Power and Light Company in the State of Pueblo. It can store 34,850 acre feet and be used as a penstock for pressure pipes. It is thrown across the Necaxa River which has a discharge varying from 70 to 7,000 second feet or cusecs.

It was originally intended to build a masonry dam here but the softness of the rock substratum was considered unequal to the concentrated unit pressure of a dam of that description so the hydraulic fill was substituted. The material was sluiced down from the adjacent heights where good clay gravel and masses of rock were met with. A photograph in Reservoirs of the deposition of rock on the slopes shows pieces of 16 cubic feet which had been sluiced down the flumes. This dam is 180 feet high in altitude not long ago deemed impracticable for an earthen dam.
Fig 3a is a photograph of the work during construction derived from the above work.
(11) Fig 4 is the section of a dam across the Oigawa River in Japan. It is to be of hydraulic fill throughout, except the outermost layer on the slopes which will be rock (presumably hand-packed) from the tunnels. On the upstream toe is a core wall of concrete with a steel diaphragm built, and the rock filling of the toe is covered with planking, above the point where the steel core intersects the slope, the latter will be covered with asphalt laid over 18 inches of pitching or riprap. This dam, when completed, will be the highest in the world. This is a notable example of the possibilities of and the confidence placed in, the hydraulic fill dam.

(12) In Fig 5 is a section of the Maladevi Dam, the most recent construction of that kind in India. Both toes are formed of rock fill, the upstream one forming a temporary overfall for floods after the first year's work. The overfall slope is faced with a thick layer of concrete. The whole of the upstream slope is covered with a layer of concrete overlying one of gravel. The plans are derived from Strange's "Indian Reservoirs"

The full and maximum levels are the same. This means that the weir sill can be closed or raised by gates, automatic or otherwise. The reservoir formed will impound 117,400 acre-feet.

The waste weir (Figs 6 and 6a) is of the so-called stepped type, having three sets of gates at the centre twenty sluices, 6 feet by 4 feet, worked by screws and capstans. Next is a battery of eight automatic gates, 8 feet by 10 feet. Above all, and extending for its whole length, 1,135 feet of the weir crest is an arcade carrying a footpath and tramway for travelling winches. These are provided with 10 × 4 feet teak wood shutters, which are used to temporarily raise the weir crest level by 4 feet. The automatic gates it is proposed to use are of Rheinholt's patent, shown in Fig 14, post. The calculated discharges are as below —

<table>
<thead>
<tr>
<th>Description</th>
<th>Feet</th>
<th>Second feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>One ccc overfall, 800 feet × 4</td>
<td>22,827</td>
<td></td>
</tr>
<tr>
<td>Twenty underslides, 6 × 4</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>Eight automatic gates 8 × 10</td>
<td>6,457</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>41,284</td>
<td>second-feet</td>
</tr>
</tbody>
</table>
Elevation

Sections in Maladevi Tank Project
Section through temporary waste channel

Temporary crest of drystone (upstream)

Longitudinal Section showing gap left for closure

Figs 53a—Maladewa Dam Mysore India
finally adopted, or whether several batteries of the automatic gates used on Lake Erie in the Bombay Presidency have not been substituted. This later form of automatic gate has been pronounced a great success. The outlets

The discharge is equivalent to a run off of 458 inches an hour from the catchment of 353 square miles. It is doubted whether this plan has been
from this latter reservoir consist of 6 vents 8 feet deep by 4 feet wide, a.

Plan of which is given in Fig. 16, post.

Fig. 7—Zuma Dam, New Mexico.
(13) The Zum Dam (Fig. 7) 720 feet long and 70 feet high is of a different type to the ordinary hydraulic fill earthen dam. It consists of a trapezoidal block of rubble masonry laid dry backed by hydraulic earth fill. The connection with the solid clay substratum through the river bed of boulders...
and sand is made by a puddle trench. The water for sluicing was delivered through an 8 inch pipe to the hydraulic gate by a steam pump having a capacity of 3 cusecs. The work was completed in 1907.

The spillway was excavated in rock 100 feet wide and 10 feet deep. In September 1909 the dam partially failed through the failure of its spillway, the lava rock foundation of which became undermined and subsided 7 feet.

(14) An example of pure rock fill dam or rather weir built of dry coursed masonry with a thick skin of concrete on the upstream side and the lower 2½ to 3 feet laid in cement mortar is given in Fig. 8 of the Alfred Dam in Maine.

![Fig 8 — Alfred Dam, Maine](image)

(15) Fig. 9 is of the Milner Dam Twin Falls Canal in Idaho. It consists of dumped rock thrown round a wooden plank core which latter is embedded in dry rubble masonry. The upstream side is made up of hydraulic earth fill.

The wooden diaphragm is for the temporary purpose of preventing the mud of the hydraulic fill washing away through the interstices of the loose rock. Once the hydraulic earth fill is drained and consolidated it will become perfectly watertight and the diaphragm can be permitted to decay without any damage accruing.

(16) Fig. 10 is a section of the Lower Otay Dam in California. This dam spans a narrow canyon and it was originally intended to build a masonry weir on the site. This accounts for the apparently unnecessary mass of concrete at the base of the dam. It is rendered watertight by a diaphragm of steel plate enclosed in a concrete wall 2 feet thick. Without acquaintance with all local circumstances it is impossible to judge whether such a dam is the most economical form possible.

(17) Fig. 11 is a diagram illustrating the method of rendering a dam formed of sand watertight by means of a puddle core and a puddle trench carried down to solid clay. The slopes also are protected by a layer of clay.
A very instructive example of the capabilities of embankments made of pure sand is given in Fig. 12 of the embankment of the Popoate Waterworks, taken from the Min. Prov. Inst. C.E., Vol. CXXVII.
case the embankment is not only made entirely of sand but also lies on a foundation of sand of great depth. The H.W.L. is 44 feet above the floor of the sluice which is at the bed level of the original stream. The free board or margin between H.W.L. and crest of bank is greater than usual being 15 feet i.e. one third depth of water and the crest width is 32 feet.

The usual dimensions of a clay embankment where a wide roadway is not required would be top width 15 to 20 feet and free board one fourth to one fifth depth of water with a minimum of 3 feet and a maximum of 6 feet and face slope 3 to 1 back slope 2 to 1 whereas in this case the face slope is 4 to 1. The pipe culvert is founded on blocks of brickwork sunk 8 feet below the floor and filled with concrete the inlet tower is founded in like manner. The leakage is said to be insignificant the silt deposit on the bed of the tank having stanch the sand. The value of \((\ell) \) in this case is 370 feet and the H.S.L. is 30 feet above sill of outlet. Consequently, \(e = 12.3 \).

(19) Fig. 19 shows the founding of a puddle wall on concrete which continues the impermeable core down to solid rock. In some embankments the puddle trench has to be carried through fissured or inferior rock in this way to even 100 feet in depth.

With regard to the thickness of puddle walls the following extract from Waterworks Engineering a recent standard work on the subject will give a safe general rule — For general guidance it may be regarded as a safe rule to make the thickness of the puddle wall at the base of the embankment equal to one third the depth of the impounded water in the reservoir battering both sides at such an angle as will give a common thickness of 6 feet of puddle at the top of the wall. This dimension would only apply to a very large embankment. It is unnecessary to carry the puddle wall above the highest wave level of the reservoir and it is undesirable for it to
have anywhere a less covering than 3 to 4 feet of ordinary earth to protect it from the co-operative influences of sun and wind. The puddle wall must be carried down through the sub soil to form a watertight joint with the impervious base of the reservoir. It is laid in a trench excavated in the ground the sides of which frequently battered equally but always reversely to the sides of the puddle wall in the embankment form the requisite lateral support to the material. In practice the thickness of this wall at the base is seldom found to be less than half the thickness possessed by it at the ground level. The puddle core is sometimes formed of an intimate mixture of sand, gravel and clay. In the United States peat has been used for the same purpose but in that country the core is now almost invariably made throughout of rubble masonry or concrete or steel plates enclosed in concrete or a wooden diaphragm is made use of.

The Madras rule for the thickness of puddle walls is to make them 2 feet thick at top with a side batter of 1 in 8 or 1 in 6. The base width would then become \(d - 2 \) or \(d + 2 \) not very far from the rule quoted in the last paragraph of the side batter is however much greater and the top thinner. It should be borne in mind however that the earth when carried by coole labour is far more evenly distributed and much better consolidated than when tipped by trucks in the usual European method hence a thinner section of puddle wall can be adopted.

(20) The usual safe side slopes to embankments are 3 to 1 on the water side with 2 to 1 at the rear. As regards top width this should not be less than 8 feet in a small tank impounding 10 or 15 feet of water increasing to 15 or 20 feet in a high embankment. It is evident that the top width should as in the case of a masonry dam be some function of the depth of MWL and the general rule adopted in Madras is that the width of an embankment at MWL should not be less than the maximum depth appears worthy of general use. Thus with 50 feet depth and 6 feet free board and 3 to 1 fore and 2 to 1 back slopes the thickness of crest will become 50 (5 × 6) 20 feet. But this rule would not be operative for depths much below 40 feet. A direct rule for the top width irrespective of the height of free board of \(2 \sqrt{d} + 2 \) would seem to be in agreement with ordinary practice. Thus with MWL at 16 feet depth the crest width will be \(2 \times 4 + 2 = 10 \) feet.
at 25 feet depth \((2 \times 8) - 2\) = 12 feet at 40 feet depth \((2 \times 6) + 2\) = 14 feet and at 50 feet depth \((2 \times \frac{7}{7}) - 2\) = 16 feet

The Madras rule for top width is \(d\) with a minimum of 8 feet in long tank embankment with varying depths.

The height of the free board above M.W.L is seldom less than 10 feet in large embankment or than 3 feet in small ones. The free board is subject to the effects of wave action.

The section of the Waghar Embankment in Fig. 1 with a top width of only 6 feet is not considered a good one by Colonel Mullins by whom the group

of Bombay tanks are critically reviewed in the Appendix to the Madras Irrigation Manual.

The formula for the height of the waves in feet above M.W.L is \(1.5\sqrt{I} \times (2.5 - \sqrt{I})\) where \(I\) is the fetch or longest line of exposure of water surface to wind expressed in statute miles.

Thus if \(I = 4\) miles the height will be

\[(1.5 \times 2) + (2.5 - 1.4) = 3 + 1.1 = 4.1\text{ feet}\]

With \(I = 10\) miles the height will be \((1.5 \times 3.2) + (2.5 - 1.7) = 5.1\text{ feet}\)

Embankments where the soil is unfavourable are often provided with drains longitudinal behind the puddle wall with transverse ones at intervals. These are trenches filled with loose stone in order to carry off any leakage and prevent the rear portion being supersaturated thus preventing slips.

(21) A masonry dam has this advantage over an earthen embankment in that it can act in whole or in part as a waste weir. For instance the Vrynwy Weir 60 feet high which has an overflow the Coolgardie Weir 120 feet high and the Bhatgurh overflow weir or else waste or supply sluices can be built in the body of the wall as has been done in the case of the Bhatgurh and Assur Dams.

The design of the section of all kinds of masonry dams and the rules
(2) Disposal of Surplus Water

(22) Where the main dam of a reservoir does not itself act as a waste weir by allowing surplus water to pass over it or through it (if waste sluices are adopted) a separate waste weir or bye wash or spillway has to be constructed. Such is naturally also the case where the dam is of earth. The safe disposal of surplus water passing through an irrigation tank which is often the receptacle of a large stream is a most important matter and the ruin of most irrigation tanks is generally due to proper means of escape of surplus water not having been provided. For designing such a work the maximum possible inflow into the tank, under the assumption that the latter is already full, has to be ascertained and the waste weir built of such a length as to be able to discharge this quantity or rate of inflow at a defined depth of film of water passing over the crest. This depth (d) is very often 3 or 4 feet but may be made anything in reason provided that the expense of raising the embankment all through to this extent does not exceed the cost of providing a longer waste weir with a less value of d

It is evident that the crest level of the waste weir is that of full supply level or $S.L.$ of the reservoir while the maximum tank level or $M.T.L.$ (to use the Madras phraseology) will be $S.L. + d$. Now the level of the crest of the embankment or dam is naturally dependent on the latter, not the former, so that the adoption of a waste weir as a means of disposal of surplus water involves the raising of the whole embankment to an extent equal to d.

Diagram:

- Bhatgarh Weir
- Diagram showing weir and shutters
-标注：Bhatgarh Weir Automatic Shutters
governing the shape of the profile have been fully treated in Chaps II and III.

The material of which a dam or weir is constructed is usually either rubble masonry or concrete. The following remarks on this subject, from Waterworks Engineering (Tudsbury and Brightmore) are well worthy of reproduction.

The construction of the vast masses of masonry or concrete of which dams are formed is an art that requires the exercise of judgment in the selection of the materials used, close attention to their preparation and workmanship during the process of building. The question as to whether concrete or rubble masonry is in any given case the preferable building material must largely depend upon the character of the rock available. The great tensile strength of Portland cement causes it to be in high favour as a matrix but it is not entirely unexceptionable. Where a dam abuts as is frequently the case upon steep hill sides, the rapid variation in height tends to produce an unequal settlement in the masonry or concrete as the structure is gradually raised. This settlement is resisted by the shear of the material transmitted from the comparatively unyielding rock abutments. It is not improbable that action of this kind has produced some of the fractures that have too often occurred in such dams. If this be so it points to the prudence of building in a slow setting hydraulic lime, thereby permitting free settlement of the mass before it sets rigidly. The rapid settlement during construction of large masses of concrete must give rise to internal shearing stress of indeterminate amount. In concrete work such settlement is much reduced by the introduction of large blocks of stone and boulders into the work, a practice that possesses the advantages of adding to the coherency of the entire work and generally of effecting some economy in its cost.

To which remarks might be added that the use of long header stones in rubble masonry laid crossways which is often specified tends to facilitate rupture of the wall. With a battering face each face course overlaps the preceding one, thus automatically forming a bond between the face work and the interior filling so that long bond stones are not only unnecessary to preserve transverse bond but they have the disadvantage of breaking the longitudinal bond. A wall under pressure from the rear has no tendency to split longitudinally as a badly bonded wall of a building might have, but owing to unequal settlement the tendency is for transverse cracks to be formed. Thus if used at all which is to be deprecated bond stones should lie longitudinally not transversely. The author considers that the use of special bond stones in rubble masonry is a mistake as tending to destroy the homogeneity of the mass.

In the Biagtihai Dam a section of which is given in Fig. 15, Chap. II the interior was formed of concrete with a plentiful inter sprinkling of large stones which were embedded in the concrete. This raised the specific gravity of the mass considerably above what it would have been without the admixture of heavy stone blocks the actual weight rising to 150 or 160 lbs per cubic foot.

The Purna Ir Dam (Fig. 13, Chap. II) is also formed of concrete.
(2) Disposal of Surplus Water

Where the main dam of a reservoir does not itself act as a waste weir by allowing surplus water to pass over it or through it (if waste sluices are adopted) a separate waste weir or by pass weir or spillway has to be constructed. Such is naturally also the case where the dam is of earth. The safe disposal of surplus water passing through an irrigation tank which is often the receptacle of a large stream is a most important matter and the ruin of most old native Indian irrigation tanks is generally due to proper means of escape of surplus water not having been provided. For designing such a work the maximum possible inflow into the tank under the assumption that the latter is already full has to be ascertained and the waste weir built of such a length as to be able to discharge this quantity or rate of inflow at a defined depth of film of water passing over the crest. This depth (d) is very often 3 or 4 feet but may be made anything in reason provided that the expense of raising the embankment all through to this extent does not exceed the cost of providing a longer waste weir with a less value of d.

It is evident that the crest level of the waste weir is that of full supply level or $I S L$ of the reservoir while the maximum tank level or $M T L$ (to use the Madras phraseology) will be $I S L + d$. Now the level of the crest of the embankment or dam is naturally dependent on the latter not the former so that the adoption of a waste weir as a means of disposal of surplus water involves the raising of the whole embankment to an extent equal to d.
the greatest allowable depth of film passing the weir. This forms the great drawback to the adoption of waste weirs which otherwise are an excellent provision for escapes being self acting.

In order to reduce the difference between FSL and MFL to a minimum if not to abolish it altogether several courses are open. Firstly, the weir could be provided with collapsible shutters balanced at the centre of pressure so as to fall automatically when overtopped. They have to be raised by hand which could be effected on the lowering of the water level in the reservoir by men hooking them up into position from a staging erected over the weir. This method requires very judicious regula-

![Diagram 1a - Longitudinal Section Bhatgarh Dam](image)

![Diagram 1b - Elevation of part of Bhatgarh Dam](image)

tion to prevent loss of storage water and is practically limited to depth of 3 or 4 feet. Secondly, Automatic drop shutters could be adopted as exemplified in the Bhatgarh waste weir (Fig 14) or the Lake Ile waste gates (Fig 16). This system is purely automatic in action the gates being lowered on any increase of level in the water of the reservoir while on a fall of the same below FSL they rise and close the openings. Thirdly. Sluice bridge openings could be adopted similar to what was suggested for the Koshi-Si Escape in Chap III with collapsible upper gates and lower draw gates or only with the former. Fourthly, An overfall of any kind could be abandoned and the regulation effected by low level sluices built in the body of a closed dam as exemplified in the Bhatgarh Dam and the Assam Dam (Chap II). Fifthly, The cylinder rolling on crest as shown in Fig 29. Sixthly, In the stepped weir (Fig 6) where three systems are employed together.
The design of the Bhatgarh self-acting shutters is illustrated in Fig. 14.

The principle is that of a counterweight placed in a deep cistern constructed under each pier which counterweight is connected with the gate by a system of chains and pulleys. This gate is hung vertically and runs on anti-friction rollers. An inclined channel through the pier connects an opening which is placed at the base of the cistern. When water rises above the counterweight, it lowers the gate. When the level in the reservoir falls below the supply of water to the cistern is cut off and the counterweight falls bringing the gate up into position again.

There is a small outlet at the base of the cistern. These gates are said to have given complete satisfaction.

The section of the Bhatgarh Dam is given in Fig. 15, Chap II. This dam is 3000 feet long and 127 feet high above the lowest point in the foundations. It impounds 90,000 acre feet available for irrigation. The dam has 15 low level vents 8 feet deep by 6 feet wide and the waste weirs on either flank consist of an arcade with 103 openings of 10 feet. Automatic gates illustrated in Fig. 14 are fitted to 88 of these, the rest being opened and closed by hand. The water from the undersluces and overfall weir fills into the bed of the Nira River and further down fills up a low depression termed the Vir Basin, which also contributes in a certain degree to the storage capacity. At the termination of the Vir Basin is a long waste weir.
at the head of which the left bank Nira Canal * takes out It irrigates at present 75,000 acres with a length of main canal of 100 miles and 139 miles of distributaries

Fig 14a is a longitudinal section of the Bhatgarh Dam Fig 14b a part elevation of the deep underslides and Fig 14c a site plan These sluices have proved effective in keeping down silt deposit and the reservoir in twelve years time has not yet silted up to cill level When it does they are expected to prevent any further rise in the deposit A photograph of the Bhatgarh gates is given in Fig 14d

(25) The lakes formed by the two dams (see map Fig 15)—the Bhatgarh Dam on Lake Whiting formerly called Lake Bhatgarh and the Lake File Dam ahas the Mutha Dam—are situated only twenty-five miles apart, in the Western Ghat Mountains They are built across the Nira and the Mutha Rivers the catchment area of the former of which is but 128 square miles but the rainfall in the catchment varies from 250 inches in the ghats themselves to 40 inches at the dam site These rivers discharge immense volumes of water during the actual monsoon months but from January to June practically run dry The object of the reservoirs is to collect a proportion of the flood discharge and store it for the months when irrigation is
mostly in demand. The catchment of Lake Hfe is larger than that of Lake Whiting. The Bhagirish Dam etc.

1886 was the first to be provided with underslides and is consequently the precursor of the Assuan Dam. These sluices however do not carry by any
means the whole discharge of the river as is the case with the Assuan but are considered to be mere scouring sluices to keep the reservoir from silting up.

The work in the Vir Basin consists of a weir 2,273 feet long and 42 feet high. It has two sluice openings closed by needles and two deep under sluices.

The Mutha Dam is 3,700 feet long and 98 feet high. At its deepest part it impounds 70,000 acre-feet available for irrigation.

The map (Fig. 15) shows both canals and the areas irrigated by them with their headworks.

The whole of the irrigation is on sidelong ground. The canals cross many drainage lines and consequently have proved very expensive to construct. These Bombay irrigation works resemble those in America more than the doab and delta canals in the flat country in Upper India and Madras.

(28) In the Mutha or Lake Tife Surplus Escape Weir a new style of automatic closure gates was introduced which has given more satisfaction than the Rheinhold pattern could do as the latter requires a high weir in
which to work properly. The following description is abridged from that given in The Irrigation Works of India from which source Fig. 16 is also derived. The gates work in pairs suspended from pulleys by chains. The lighter gate is drawn up by chains attached to its ends working inside the grooves while the heavier gate is fitted with a square hollow frame the area of which is the same as that of the gate itself. The chain is attached to the centre of this frame and consequently does not get in the way of the current when the gate is lowered. The heavier gates weigh over 100 cwt and the lighter ones 44 cwt.

The sluices open when the heavier gates are allowed to fall. When fully open the heavier gates lie below the sill of the weir and the lighter ones rest above the flood water level. The gates are closed by the action of a counterweight which is attached by chain or wire to the heavier gate. When the heavier gate is lifted the lighter one descends by its own weight. The counterweight works in a round cistern specially constructed for it below the weir. It has a cubic capacity of 700 to 800 cubic feet but this varies with the depth of the overfall. The lower part below the extreme run of the counterweight is filled with sand.

The plan and section Figs. 16a and 16b illustrate the action of the counterweight. When full supply which is also flood level is reached, water runs down the channel P into the cistern gradually immersing the counterweight till at last it floats. The tension in the chains attached to the heavier gates is then relaxed and the gates fall opening their own vents and by pulling up the adjoining lighter gates open their vents also. At the bottom of the cistern is an outlet pipe of smaller size than P. When the flood level falls the supply from P is reduced or else ceases altogether and
means the whole discharge of the river as is the case with the Assuan, but are considered to be mere scouring sluices to keep the reservoir from silting up.

The work in the Vir Basin consists of a weir 2,273 feet long and 42 feet high. It has two sluice openings closed by needles and two deep under sluices.

The Mutha Dam is 3,700 feet long and 98 feet high. At its deepest part it impounds 70,000 acre feet available for irrigation.

The map (Fig 15) shows both canals and the areas irrigated by them with their head works.

The whole of the irrigation is on sidelong ground. The canals cross many drainage lines and consequently have proved very expensive to construct. These Bombay irrigation works resemble those in America more than the doab and delta canals in the flat country in Upper India and Madras.

(26) In the Mutha or Lake Tife Surplus Escape Weir a new style of automatic closure gates was introduced, which has given more satisfaction than the Rheinhold pattern could do as the latter requires a high weir in
which to work properly. The following description is abridged from that given in The Irrigation Works of India, from which source Fig. 16 is also derived. The gates work in pairs, suspended from pulleys by chains. The lighter gate is drawn up by chains attached to its ends working inside the grooves, while the heavier gate is fitted with a square hollow frame the area of which is the same as that of the gate itself. The chain is attached to the centre of this frame and consequently does not get in the way of the current when the gate is lowered. The heavier gates weigh over 100 cwt., and the lighter ones 44 cwt.

The sluices open when the heavier gates are allowed to fall. When fully open the heavier gates lie below the sill of the weir, and the lighter ones rest above the floodwater level. The gates are closed by the action of a counterweight which is attached by chain or wire rope to the heavier gate. When the heavier gate is lifted, the lighter one descends by its own weight. The counterweight works in a round cistern specially constructed below the weir. It has a cubic capacity of 700 to 800 cubic feet, or this varies with the depth of the overfall. The lower part below the extreme run of the counterweight is filled with sand.

The plan and section Figs. 16a and 16b illustrate the action of the counterweight. When full supply which is at flood level is reached, water runs down the channel P into the cistern, gradually immersing the counterweight till at last it floats. The tension in the chains attached to the heavier gates is then relaxed, and the gates fall opening their own vents and by pulling up the adjoining lighter gates open their vents also. At the bottom of the cistern is an outlet pipe of smaller size than P. When the flood level falls, the supply from P is reduced or else ceases altogether.
the water in the cistern then empties itself in a short time through the outlet, thus bringing the counterweight down and reversing the action previously described. The outlet as well as the inlet pipes are provided with throttle valves worked by hand when necessary from above. There are also some other inlets controlled by valves, by means of which the automatic action can be stopped and the gates held up at any required level.

The installation of these eighty eight gates alone cost 5 lakhs of rupees, or $30,000 nearly (150,000 dollars). They can discharge 66,000 second feet.

These gates have given perfect satisfaction in working. The instalment is undoubtedly very expensive, and would cost more in India than in America, but where the embankment or masonry dam is very long, it saves the cost of the whole work being raised 8 feet, which would be the case if an open overflow weir were adopted, thus effecting a large saving, besides diminishing the risk. A view of the gates acting is given in Fig. 16c.

(27) A section of the Goulburn Weir at the head of the canal system of that name in Australia is given in Figs. 17, 17a, 17b. This is a drop gate weir. Reinforced concrete piers 2 feet wide are erected on the crest 20 feet apart and these spaces are closed by drop gates 20 feet long by 10 feet deep. The gates which are manipulated by rack and pinion gearing, are lowered into recesses constructed below the weir crest. Owing to the extreme thinness of the piers and the weakening of the section by the gate recess below, the weir has to be strengthened by extensive steel reinforcement right down to the level of the base of the recess, and the framework of the
pier is bolted down to this lower reinforcement. The view in Fig 17b is derived from 'Irrigation Engineering'.

(28) This arrangement which clearly involves considerable expense with no corresponding advantage cannot be commended. A better arrangement undoubtedly would be to substitute solid wide masonry piers arched over in the usual Indian style. The drop gates can be disposed of by being arranged to slide down the inner face of the weir and when drawn up will run in roller paths up the face of the piers. The extra thickness given to the piers will necessitate lengthening the weir but any increase of masonry
in this respect can be economised in the base thickness, which is unnecessarily great.

(29) Fig. 19 is a section of the Assuan Dam, as originally constructed, through the lowest tier of sluice openings. These sluices are 2 metres wide and 7 metres high, and the piers are 5 metres in width, with occasional abutment piers.

The lifting arrangement with Stoney’s anti-friction rollers is illustrated in Chap. XIV.
CHAPTER XII.—RESERVOIRS AND TANKS

An elevation of the dam showing the position of the various tiers of sluices is given in Fig. 19b, and a plan over all in Fig. 19a. This dam, of which a short account was given in par. (39), Chap. II., has been raised 24 feet higher, it will then impound a volume double of what it was originally designed for, and become a really great work.

(20a) The original Assuan Dam was designed to store 863,000 acre-feet of water for the irrigation of 420,000 acres of land annually. During the period 1907—1912, it was thickened and increased in height by 5 metres (16.4 feet) with a view to increasing storage for the irrigation of 988,000 acres annually. The thickening of the dam was effected by adding masonry on
The new masonry was kept 6 inches apart from the old by means of template walls of that depth, built on the face 49 feet apart, and the old masonry was tied to the new by steel tie rods, 14 inches diameter, and 84 feet long driven into the old masonry at 1 metre intervals in both directions. The downstream face to a thickness of 5 metres measured normal to the face.
to a depth of 24 feet in places. As a protection against this action a masonry apron was laid along the entire length of the dam, downstream (see Fig 19c).

(32) Where local circumstances admit of it, the cutting of a wide spillway or bye-wash will answer the purpose of disposal of surplus water from a reservoir. An example of such a work is illustrated in Fig 22 of the spillway of Ashti Reservoir. The bye-wash is a cutting 800 feet wide taken through the crest of hill which forms one boundary of the tank embankment, assuming no drop at the head, the slope is, roughly, about 1 in 700, or 1.4 per 1,000. With a 3 feet depth of water passing through, $A = 2,400$ square feet, $WP = 806$, $R = 3$ nearly, and Kutter's $N = 0.025$ $V = 70\sqrt{R S} = 4.5$, whence $Q = 2,400 \times 4.5 = 11,000$ cubic feet per second. If a depth of 5 feet were adopted, the discharge through the bye-wash channel...
would be \(Q = 4,000 \times 78.4 \sqrt{5} \times 0.014 = 26,500 \) cubic feet. What discharge the channel is intended to carry is not known. The discharge per second per foot run over a weir with free overfall is \(17.3 \) cubic feet when \(d = 3 \), and 37.3 cubic feet when \(d = 5 \). The lengths of waste weir required to discharge the same amounts previously arrived at, viz., 11,000 cubic feet and 26,500 cubic feet, would be \(\frac{12,000}{17.3} = 694 \) in the first case, and \(\frac{26,500}{37.3} = 710 \) in the second case, the depths of water being the same in either case. Thus we see that with this slope if Kutter's \(N = 0.25 \) the discharge is about seven-eighths of that with a free overfall, but if \(N = 0.225 \) the discharge is the same as that of a free fall.

Masonry rapids are a cheaper construction than a series of masonry drops. A rapid can usually pass as much water over its crest as if the overfall were vertical.

Rapids may be constructed either on a continuous slope, the inclination of which varies with the contour of the ground, or else built in steps. Water cushions may be formed in each step by building a narrow wall above the tread at its edge, this holds up water over each step, and serves to dull the velocity of the current. A good example of an escape fall is that of the Kushuk Falls (Fig 12, Chap IX). The water cushion here is necessary to check velocity.

(33) In the United States many excellent examples of storage reservoirs are to be met with, formed by damming up rivers, mostly in the upper reaches, where rock exists in the flanks as well as in the bed of the river. Many such sites are not suitable for canals to take off. This is effected lower down in the course of the river, where another weir or dam of smaller dimensions, acting only as a diversion weir, is built with the concomitant canal head and possibly scouring sluiceway. The Vir Weir of the Bhatgarh project in India is a weir of this kind. In some cases the reservoir is tapped, as was effected in the Periyar project, by a tunnel, the entrance to
CHAPTER XII—RESERVOIRS AND TANKS

which is controlled by sluice gates or by a deep diversion cut in the river rock at one flank of the weir as in the case of the Minidoka Canal light works. Where canals can take off they often have to run in a weir course cut on a bench in the hill side starting parallel to the course of the river instead of at right angles to it. This arrangement is rendered necessary by the configuration of the ground.

In Fig 23 we have a section of the dam with a site plan of the light works of the Minidoka Canal, the head regulator of the canal of which has already been illustrated and commented on in Chap VIII Fig 21 par (23). The dam in this case is a combined loose rock, and earth dam 60 feet high. The diversion channel whereby the reservoir is tapped is shown cut in the rock on the right flank of the weir. This is closed by five gates 5 feet wide and 30 feet high each operated by a pair of geared screws. The sill of these sluices is at RL 102.00 or 52 feet below crest of dam.

As is frequently the practice the waste weir is situated on top of one or both the shoulders of the hill adjoining the canyon a spillway being excavated if necessary to a depth sufficient to bring the crest of the waste weir 5 feet or more above the highest point of the spillway. If the waste weir is not raised well above the spillway its free discharge will be greatly hindered by the shallowness of the approach channel. In the present instance no excavation seems to be requisite as from the section given the natural surface appears to be 11 feet below the weir crest and 18 feet below that of the dam. On this the weir is built to a curve on plan following the highest ground line.

(34) A somewhat similar case is illustrated in Fig 201 Chap II which is the site plan of the Roosevelt Dam across the Salt River in Arizona.

The dam is curved on plan but it has been designed as though it were a gravity dam not depending on its curvature for stability. A roadway 13 feet wide inside parapets is provided along the crest and continues across the spillways on either flank over two large span bridges 200 feet in length.

These spillways are excavated in the solid rock. They both start at about RL 190 and slope up to the weir where the floor is at RL 205 and then immediately begin to fall down to RL 155 where the rapids merge in the walls of the canyon. The waste water is thus safely conveyed away clear of the dam. These waste weirs are each 200 feet long and 5 feet high.
The Salt River project is a very large one, the dam will impound 1,284,000 acre-feet, the area of its watershed is 6,260 square miles, and it is expected to irrigate 200,000 acres annually.

The outlet of this reservoir is made by driving a tunnel 500 feet long, 12 feet wide, 10 feet high, through the solid rock at one side of the dam, in which six gates, each 63 feet wide 11 feet high, for gateways 5 feet x 10 feet, weighing about 9 tons each and operated by electric motors control the outflow. It is also to act as a silt scouring sluice. It would be a matter of interest to know if these are anti-friction roller gates or whether the old contact system is still practised, as appears to be mostly the case in the States. The tunnel can discharge 10,000 second feet, which falls into the river channel below. There are several other works on this large project, of which one, the Granite Reef Weir over the Salt River, is illustrated in Chap II. par (58).

(35) A further example of a reservoir work is the Folsom Canal Weir, built across the American River in California (Fig 24). The disposition of

![Fig 24 — Site Plan of Folsom Canal Head Works](image-url)

the head works is due to the necessities imposed by the site. The river is crossed at right angles by a masonry weir, which for a length of 180 feet has the crest lowered. This gap can be closed by one long hinged truss gate operated by hydraulic presses, details of which are given in Wilson's "Irrig-
The higher portion ends on the west side with a head regulator, the canal of which takes off at right angles to the axis of the weir. On the east side the weir is turned in a curve of 90 degrees and thus continues parallel to the river up to another canal intake that of the Last Canal.

The crest of the higher part appears to be only 5 feet above that of the weir crest so on the same level as the crest of the weir shutters with the evident intention that in case of high flood the long arm of the weir could be overflown and thus utilized as an emergency outlet for flood water. The maximum flood level is said to be 30 feet above weir crest or at RL 225.

In both canals sluice gates are provided for the purpose of removing silt while there are three culvert sluices in the body of the weir itself at a low level in order to scour deposit occurring in rear of the weir wall. See also Chap II par (61) Fig 34.

The Eastern Canal Head is a very massive structure and has been already illustrated in Chap VIII par (27) Fig 23. This head is provided with what are termed sand traps that is silt is deposited in the sand traps and carried away by the sand gate shown at the side.

The section of the weir is given in Fig 34 Chap II par (61).

Fig 25 — Site Plan La Grange Weir

Fig 29 Chap II par (57) The arrangement of the canal off-take is similar to that of the east side canal of the Isom Dam. The canal runs parallel to the river on a bench cut in the shoulder of the hill with a flank wall on the left side towards the river. This flank wall acts as a waste weir and is
practically a continuation of the main weir, but at right angles to it. This subsidiary waste weir terminates with a scouring sluice head, close to which, at right angles, is the Modesto Canal Head Regulator. This disposition is clearly a better one than that at the Folsom Canal, where the sluice head is placed not close to the canal head, but higher up the approach channel near the weir. The clearance of all deposit in the approach channel, which also acts as a sluice way, is thus assured, which is not the case with the Folsom Canal Head. On the left of the weir a tunnel is bored through the rock for the supply of the Turlock Canal (not shown on site plan).

(37) Fig. 26 is a map showing the course of the Turlock Canal, which is not given in the larger scale site plan of Fig. 25.

The canal starts with a tunnel through the solid rock, it then falls into

![Site Plan of Turlock Canal](image)

Dry Creek, filling up a large depression which is blocked at a low part of its banks by a dam. The canal, after leaving this depression which it fills up with water, crosses Dry Creek, being here at a higher level, and then passes through a watershed by means of three short tunnels, when it reaches comparatively open country. Any excess of water received through the tunnel is got rid of by waste gates, or, as they would be termed in Indian irrigation nomenclature, by an escape head which lets it out back into the Tuolumne River by way of Dry Creek.
The whole scheme forms an instructive example of the difficulties connected with the alignment of canals in a hilly country.

(38) The Dhikwa Weir in Bundelkund United Provinces of India the profile of which has already been given in Fig 28 par (56) of Chap II is shown again in Fig 27.

Like many American examples the weir will impound water to a level well raised above the shoulders of the flanks of the river channel proper. The weir will thus consist of a central overfall weir crossing the defined river channel its continuation on either flank being an unsubmergible earthen dam provided with a masonry core wall. The two earth dam portions are about 1000 feet long each and some 35 feet high while the central masonry weir is about 60 feet high to crest of the shutters. This arrangement is exactly the reverse of that obtaining in the Minidoka Head Works (Fig 23) or of the Roosevelt Dam (Fig 21 Chap II) where the waste waters are on the flanks the central part being in unsubmergible dam.

The flood discharge of the Betwa River is estimated at 800,000 second feet and the available impounded supply 56,000 acre feet. This reservoir is tapped by three large body sluices $8 \times 6\frac{1}{4}$ and 8×10 worked by Strategy gates and so as to act as a feeder to the lower old Betwa Reservoir and to the canal which takes off from it. How these sluices are to be worked whether from the tunnel or from top of special piers built over each on the weir crest is not stated.

(39) The arrangements adopted in this work of dropping and raising the collapsible weir shutters present features of considerable interest as they do not involve the necessity of an over bridge. They are fully illustrated in Figs 27 and 27a. In the latter figure it will be seen that a rod marked A, provided with a hooked end is attached to the base of the movable struts.
of each shutter, this end is engaged by the similarly curved end of an arm of the lever BC

The lever handles C are all situated in recesses connected with a tunnel which runs longitudinally throughout the weir. By pressing the handle C the rods A and B are disengaged and the shutter will fall. The gates can thus be let go either by an attendant or by the handles being connected with a cable worked from each end of the weir.

The raising of the shutters will be effected by means of a crane, running on rails on the weir crest itself. The crane as it moves along will be sheltered from the rush of water over the weir by being situated well in rear of the shutters it has already raised in its advance. The connection of each strut with the lever BC will simultaneously be effected by a man operating from the tunnel below.

The weir shutters are 8 feet high.

The obviously weak points in the design of the regulation apparatus consist in the multiplicity of the gates, which, not being automatically collapsible have to be lowered as well as raised. The weir crest is no less than 4000 feet in length consequently 400 gates will have to be manipulated. Arrangements are contemplated whereby they can be lowered in batches, but the raising of the shutters is necessarily a very slow operation. In addition to this considerable leakage is bound to occur into the subway by means of the slots through which the vertical arm A attached to the longitudinal D must move back and forwards as the shutter is raised or lowered. These may be covered by stanching strips, but still, under a possible head of 13 feet of water, leakage is bound to occur.

Two alternative systems presenting advantages from some points of view have already been illustrated in Fig 34, Chap II, and in Fig 14. In the former that of the Poulam Canal Weir a hinged trussed shutter, 150 feet long and 5 feet deep is raised and lowered by means of a series of hydraulic jacks, the plungers of which act as the supporting struts.
Reservoir and Tank Irrigation Outlets.

Next to pipes laid through an embankment, which as a rule are only suitable for small tanks upholding 6 feet to 8 feet of water, the simplest form of outlet is that illustrated in Fig. 29. This consists merely of a narrow bridge opening, which is regulated either by double wooden gates either superimposed or moving in double grooves, or by sleepers or bulks of wood, which are slipped into the grooves and removed or replaced one by one as
required. The advantage of the latter system is its extreme simplicity and ease of manipulation. The water being drawn from the top and having a vertical overfall, the velocity of entry is mostly absorbed. On the other hand, when draw-gates are used, the water issues with considerable velocity, the opening acting as a sluice under a head of water. The use of double or triple gates obviates this to a considerable extent, as when the top gate is completely withdrawn the conditions become those of an overfall.

In Fig. 29 the opening is 5 feet wide, the floor for the length of the abutments is formed by an invert, a suitable arrangement in this case, as the abutments can be considered as a masonry beam supported at both ends and subjected to a load increasing from the top with the ordinates of the triangle of earth pressure (side Chap. I.), and so can be designed of light section.

The arch is placed so as to be clear of the water spill at full supply. The wings are of the ordinary sloping crested type, and their bases are divergent, 1 in 20 (or the vertical batter multiplied by the slope of crest) from a parallel to the axis of the work. On both sides the wings have a crest slope of 2 to 1, that of the embankment on the rear side being reduced gradually from its normal inclination of 3 to 1 to the steeper slope. This intermediate portion of bank should be pitched. The rear wings slope right down to the ground level, which is the most economical arrangement, while the fore wings terminate in short returns so as to form a junction with the bank of the escape channel or canal.

(42) When the water is deeper than about 10 feet, this type of outlet will not answer. It will be more economical to adopt a barrel culvert for the outlet thus abolishing the abutments. The wings, however, will remain, with the addition of a breast wall on the fore side as connection.

(43) In Fig. 31 the sluice openings are double, 3 feet × 2½ feet in size. In order to save masonry, the projecting piers and abutments terminate at elevation 117, or 1 foot above maximum rank level, and space for the working platform, which is usually of wood, is obtained by sloping back the embankment. Access to this will be afforded by a step-ladder. Two sets of grooves are provided in order to enable either of the gates to be examined and repaired with a head of water in the tank. This can be effected by filling and consolidating earth in the space between the sets of bulks placed in the grooves. Figs. 31a and 31b are sketches of the gate and its frame. The sluice head openings can be lined with cast iron plates or else built of ashlar. The roof can be made of rails or rolled beams set in cement concrete, or ashlar slabs could be used. Each of these sluice openings, with a maximum free head of 13 feet, will discharge \(Lc \sqrt{2gh} \), or \(3 \times 2.5 \times 65 \times 0.25 \times 3.6 = 140 \) cubic feet per second, or both open, 280 cubic feet per second. The area of the culvert when full is about 28 square feet, so that the velocity of passage will be 10 feet per second with both sluices open. The channel to carry this discharge would have to be of 20 feet base width at least.

* A better arrangement would be to build a breast wall between the upstream grooves with gate-controlled openings at three different levels each of which would be worked under a head of pressure not exceeding 11½ feet so as to moderate the velocity of efflux — I O
required. The advantage of the latter system is its extreme simplicity and ease of manipulation. The water being drawn from the top and having a vertical overfall the velocity of entry is mostly absorbed. On the other hand, when draw gates are used, the water issues with considerable velocity the opening acting as a sluice under a head of water. The use of double or triple gates obviates this to a considerable extent as when the top gate is completely withdrawn the conditions become those of an overfall.

In Fig. 29 the opening is 5 feet wide; the floor for the length of the abutments is formed by an invert, a suitable arrangement in this case as the abutments can be considered as a masonry beam supported at both ends and subjected to a load increasing from the top with the ordinates of the triangle of earth pressure (vide Chap. 1) and so can be designed of light section.

The arch is placed so as to be clear of the water spill at full supply. The wings are of the ordinary sloping crested type and their bases are divergent 1 in 20 (or the vertical batter multiplied by the slope of crest) from a parallel to the axis of the work. On both sides the wings have a crest slope of 2 to 1 that of the embankment on the rear side being reduced gradually from its normal inclination of 3 to 1 to the steeper slope. This intermediate portion of bank should be pitched. The rear wings slope right down to the ground level which is the most economical arrangement while the fore wings terminate in short returns so as to form a junction with the bank of the escape channel or canal.

(42) When the water is deeper than about 10 feet this type of outlet will not answer. It will be more economical to adopt a barrel culvert for the outlet thus abolishing the abutments. The wings however will remain with the addition of a breast wall on the fore side as connection.

(43) In Fig. 31 the sluice openings are double 3 feet × 24 feet in size. In order to save masonry the projecting piers and abutments terminate at elevation 117 or 7 feet above maximum rank level and space for the working platform which is usually of wood is obtained by sloping back the embankment. Access to this will be afforded by a step ladder. Two sets of grooves are provided in order to enable either of the gates to be examined and repaired with a head of water in the tank. This can be effected by filling and consolidating earth in the space between the sets of baulks placed in the grooves. Figs. 31a and 31b are sketches of the gate and its frame. The sluice head openings can be lined with cast iron plates or else built of stonework. The roof can be made of rails or rolled beams set in concrete or stonework slabs could be used. Each of these sluice openings with a maximum free head of 13 feet will discharge $Ac \sqrt{2gh}$ or $3 \times 2.5 \times 60 \times 8 \times 3.6 \times 140$ cubic feet per second or with both open, 280 cubic feet per second. The area of the culvert when full is about 28 square feet, so that the velocity of passage will be 10 feet per second with both sluices open. The channel to carry this discharge would have to be of 20 feet base width at least.

* A better arrangement would be to build a breast wall between the upstream grooves with gate-controlled openings at three different levels, each of which would be worked under a head of pressure not exceeding 315 feet so as to moderate the velocity of efflux.
Double Tank Structure
required. The advantage of the latter system is its extreme simplicity and ease of manipulation. The water being drawn from the top and having vertical overflow, the velocity of entry is mostly absorbed. On the other hand, when draw-gates are used, the water issues with considerable velocity, the opening acting as a sluice under a head of water. The use of double or triple gates obviates this to a considerable extent, as when the top gate is completely withdrawn the conditions become those of an overflow.

In Fig. 29 the opening is 5 feet wide, the floor for the length of the abutments is formed by an invert, a suitable arrangement in this case, as the abutments can be considered as a masonry beam supported at both ends and subjected to a load increasing from the top with the ordinates of the triangle of earth pressure (vide Chap. 1), and so can be designed of light section.

The arch is placed so as to be clear of the water spill at full supply. The wings are of the ordinary sloping crested type, and their bases are divergent 1 in 20, or the vertical batter multiplied by the slope of crest) from a parallel to the axis of the work. On both sides the wings have a crest slope of 2 to 1, that of the embankment on the rear side being reduced gradual from its normal inclination of 3 to 1 to the steeper slope. This intermediate portion of bank should be pitched. The rear wings slope right down to the ground level, which is the most economical arrangement, while the fore wings terminate in short returns so as to form a junction with the bank, the escape channel or canal.

(42) When the water is deeper than about 10 feet, this type of outlet will not answer. It will be more economical to adopt a barrel culvert for the outlet, thus abolishing the abutments. The wings, however, will remain with the addition of a breast wall on the fore side as connection.

(43) In Fig. 31 the sluice openings are double, 3 feet × 2 1/2 feet in size. In order to save masonry, the projecting piers and abutments terminate with the elevation of the platform, which is usually of wood, is obtained by sloping back the embankment. Access to this will be afforded by a step ladder. Two sets of grooves are provided in order to enable either of the gates to be examined and repaired with a head of water in the tank. This can be effected by filling and consolidating earth in the space between the sets of bulkheads in the grooves. Figs. 31a and 31b are sketches of the gate and its frame. The sluice head openings can be lined with cast-iron plates or steel built-up ashlars. The roof can be made of rails or rolled beams set in cement concrete or ashlars slab could be used. Each of these sluice openings, with a maximum free head of 13 feet, will discharge $Ae\sqrt{2gH}$, or $3 \times 2 1/2 \times 6.5 \times 8.0 \times 3.6 = 140$ cubic feet per second, or with both open, 280 cubic feet per second. The area of the culvert when full is about 28 square feet, so that the velocity of passage will be 10 feet per second with both sluices open. The channel to carry this discharge would have to be of 20 feet base width at least.

* A better arrangement would be to build a breast wall between the upstream ground with gate-controlled openings at three different levels, each of which would be worked under a head of pressure not exceeding 4 feet so as to moderate the velocity of efflux.
required. The advantage of the latter system is its extreme simplicity and ease of manipulation. The water being drawn from the top and having vertical overfall, the velocity of entry is mostly absorbed. On the other hand, when draw-gates are used, the water issues with considerable velocity, the opening acting as a sluice under a head of water. The use of double triple gates obviates this to a considerable extent, as when the top gate is completely withdrawn the conditions become those of an overfall.

In Fig. 29 the opening is 5 feet wide, the floor for the length of abutments is formed by an invert, a suitable arrangement in this case, as abutments can be considered as a masonry beam supported at both ends subjected to a load increasing from the top with the ordinates of the true of earth pressure (vide Chap. I.), and so can be designed of light section.

The arch is placed so as to be clear of the water spill at full supply. The wings are of the ordinary sloping crested type, and their bases are divided 1 in 20 (or the vertical batter multiplied by the slope of crest) from up to the axis of the work. On both sides the wings have a crest 2 to 1, that of the embankment on the rear side being reduced gradually from its normal inclination of 3 to 1 to the steeper slope. This internal portion of bank should be pitched. The rear wings slope right down to ground level, which is the most economical arrangement, while the wings terminate in short returns so as to form a junction with the escape channel or canal.

(42) When the water is deeper than about 10 feet, this type of outlet does not answer. It will be more economical to adopt a barrel culvert outlet thus abolishing the abutments. The wings however, with the addition of a breast wall on the fore side as connection

(43) In Fig. 31 the sluice openings are double, 3 feet x 21 feet. In order to save masonry, the projecting piers and abutments are placed 11 feet above maximum rank level, and the embankment which is usually of wood, is obtained by stringing grooves. Access to this will be afforded by a step ladder. Grooves are provided in order to enable either of the gates and to repel a head of water in the tank. This can be filled and consolidated earth in the space between the sets in the grooves Figs. 31a and 31b are sketches of the gun figures. The sluice head openings can be lined with cast iron plate. The roof can be made of rails or rolled beams set in orushi or sheaf shingles could be used. Each of these sluice openings for a free head of 13 feet, will discharge \(Ac \sqrt{2gh} \), or 3 \(\times \) 3.6 = 140 cubic feet per second, or with both open, 280 cubic feet per second. The area of the culvert when full is about 28 square feet of passage will be 10 feet per second with both sluices to carry this discharge would have to be of 20 feet breadth.

* A better arrangement would be to build a breast wall between with gate-controlled openings at three different levels. Each of which has a pressure not exceeding say 4 feet so as to moderate th
(44) In order to neutralise the velocity of issue a common practice is to build a square chamber in the rear of the culvert with bed sunk well below the level of the floor, and a low weir in front raised above the floor. The increased waterway thus given absorbs the velocity and the current issues from the chamber at a moderate pace. The outline of this is shown dotted on the plan and elevation in Fig. 31. The banks and bed of the issuing canal would have to be pitched for a considerable distance below the termination of the floor and wings of the sluice, unless some such remedy were adopted. The design was, however, made under the assumption that only one sluice would be opened when supply was at the maximum, the greatest allowable discharge being about 140 cubic feet per second. This would give a velocity of 5 feet through the culvert. Under such circumstances the well would be unnecessary.

(45) The disadvantages of draw gates to reservoir sluices is that careful regulation is required to prevent waste of water, and the screw lifting apparatus is expensive. With deep water the gates require great pressure to force them down. The coefficient of friction in rusty gates certainly equals unity. This last objection can be obviated by introducing anti-friction rollers in the gates. The groove of the frame in this case will have to be made wider and deeper, or else could be abolished altogether. In any case, the use of vertical starching rods will prevent leakage at the sides, and a horizontal one at the top between the upper edge of the gate and the sill. By this simple arrangement the frictional resistance would be reduced by 70 or 80 per cent. thus enormously relieving the pressure on the screw gearing, which could be made of a very light section in consequence.

(46) In the Madras Presidency a system has been successfully employed for many years in smaller tanks, which abolishes all frictional resistance the pressure of water alone having to be met, and that on a very small area, and further enables very accurate regulation of the water to be effected. This system consists of admitting water into the culvert by means of circular holes cut in the flat roof of a chamber built in front of the sluice head, which holes are closed by conical plugs of wood. This is for small tanks of 20 feet depth.

Fig. 32 contains a design illustrating this construction. Before proceeding to discuss this design we will give the following extract from the "Madras Irrigation Manual" relative to this subject:

"Taking into account facility, simplicity, accuracy and safety, there are no better means of regulating the discharge of irrigation water from tanks of the ordinary kind than plug holes provided with suitable plugs. To secure convenient and fairly accurate regulation it is necessary that (1) the holes should be of a suitable size and sufficient in number, (2) proper plugs should be provided and a well-cut seat made for the shoulder of the plug, (3) the plugs should be regulated from a platform always accessible, (4) it should be known what the discharge is at any given time, and with the tank water.

* A better arrangement would be to give the whole barrel a waterway equal to that at DD — Ed
(44) In order to neutralise the velocity of issue a common practice is to build a square chamber in the rear of the culvert with bed sunk well below the level of the floor, and a low weir in front raised above the floor. The increased waterway thus given absorbs the velocity and the current issues from the chamber at a moderate pace. The outline of this is shown dotted on the plan and elevation in Fig. 31. The banks and bed of the issuing canal would have to be pitched for a considerable distance below the termination of the floor and wings of the sluice unless some such remedy were adopted. The design was however made under the assumption that only one sluice would be opened when supply was at the maximum the greatest allowable discharge being about 140 cubic feet per second. This would give a velocity of 5 feet through the culvert. Under such circumstances the well would be unnecessary.

(45) The disadvantages of draw gates to reservoir sluices is that careful regulation is required to prevent waste of water and the screw lifting apparatus is expensive. With deep water the gates require great pressure to force them down. The coefficient of friction in rusty gates certainly equals unity. This last objection can be obviated by introducing anti-friction rollers in the gates. The groove of the frame in this case will have to be made wider and deeper or else could be abolished altogether. In any case the use of vertical snubbing rods will prevent leakage at the sides and a horizontal one at the top between the upper edge of the gate and the sill. By this simple arrangement the frictional resistance would be reduced by 70 or 80 per cent thus enormously relieving the pressure on the screw gearing which could be made of a very light section in consequence.

(46) In the Madras Presidency a system has been successfully employed for many years in smaller tanks which abolishes all frictional resistance, the pressure of water alone having to be met and that on a very small area and further enables very accurate regulation of the water to be effected. This system consists of admitting water into the culvert by means of circular holes cut in the flat roof of a chamber built in front of the sluice head which holes are closed by conical plugs of wood. This is for small tanks of 20 feet depth.

Fig. 32 contains a design illustrating this construction. Before proceeding to discuss this design we will give the following extract from the Madras Irrigation Manual relative to this subject.

Taking into account facility, simplicity, accuracy and safety there are no better means of regulating the discharge of irrigation water from tanks of the ordinary kind than plug holes provided with suitable plugs. To secure convenient and fairly accurate regulation it is necessary that (1) the holes should be of a suitable size and sufficient in number. (2) Proper plugs should be provided and a well cut seat made for the shoulder of the plug. (3) The plugs should be regulated from a platform always accessible. (4) It should be known what the discharge is at any given time and with the tank water...

* A better arrangement would be to give the whole barrel a waterway equal to that at DD —Ed
at any given level, and that the way to secure any required discharge should be readily ascertainable. In order to facilitate calculation and comparisons, it is convenient to adopt one ratio of coming for all plugs, and this has been fixed at 1 in 4, also to select the following diameters of plug holes for general use: 1 1/2, 4, 6, 8, 10, and 12 inches.

"It will often be found that a very small expenditure on the improvement of an existing sluice will obviate the necessity for constructing additional sluices, which may be asked for by the cultivators. In addition to the plug holes, there is usually and properly a low level vent, which is closed and regulated by planks or a shutter sliding in grooves. The regulation of this lower vent cannot ordinarily be conveniently managed when the water is more than 2 feet deep on the plug stone, corresponding to about 31 feet on the sill of the sluice. It is therefore desirable that the whole area of cultivation under a sluice should be capable of being efficiently supplied through the plug holes alone when the surface of the water is 2 feet above the plug stone.

Again, although 2 cubic yards per acre per hour, or 1 cubic foot a second for 66 acres is usually adequate as an average supply, this quantity, when much of the land is being prepared for cultivation, will be by no means enough. It is desirable, therefore, that the plug holes should be capable of discharging much more water at times, and this can be provided for by
Having one or two large or several smaller plug holes so as to admit of the discharge being varied according to circumstances.

It is desirable to provide means for raising the plugs to a height just sufficient to secure a full discharge and no more and this will be the case when the bottom of the plug is raised to a distance equal to the diameter of the hole above the plug stone. An iron bar (round) passed through the plug and secured therein by a key or cotter at top and bottom of the plug is the best means whereby the lower part of the attachment whether a rigid bar be used through it or a chain be the connection at the upper part with the platform. A cross bar with a hole or collar is the most suitable means of limiting the lift of the plug and a second cross bar should be placed just below the top of the said part of the lifting apparatus when a chain is used for the upper part. The plug will then be always vertically over the hole to whatever height it may be raised. When a rigid bar is used from the plug to the platform, the upper part should be flat and should be pierced with holes at short intervals (5 inches will usually be appropriate) as generally with some small and some larger holes in the plug stone the regulation can then be effected with sufficient accuracy. Similarly when a chain is used for the upper part of the lifting gear the links may be 5 inches long at the part within the range of the lift.

When the plug is of large diameter and the depth of the water great the cannot be lifted by one or two men and the provision of some sort of mechanical lifting gear will be necessary. This may be either a screw or a windlass or an overhead bar with small pulley tackle either of which would enable the regulation to be readily and easily effected. A windlass should have a ratchet with pawl or detent to keep the former in any required position.

The plugs should be made of hard dense wood and should be turned in lathe so as to be true to plugs. Heart of mahogany or of Sagay (Tan II) Durussippa (Teak) makes good plugs. They should have iron flash straps at top and bottom of the coming to prevent splitting. The shoulders of plugs should be lined with lather the thickness of the layer varying from 3/6 inch to 1 inch according to the size of the plug and the depth of the water (maximum). This layer of compressible material will diminish leakage and reduce the risk of fracture of the plug stone should the plug be accidentally allowed to drop suddenly.

Drawings of different sized plugs are given in Fig. 33.

(47) The remarks above quoted concerning lifting apparatus require it is considered some modification. All plugs small and great should be lifted by screw gear. The rods for the larger sized openings under considerable pressure should be hollow of gas or water piping. At the end of these rods which should terminate above M.W.L. a brass female screw should be fitted. This is engaged by threads cut on a solid round bar near the upper extremity of this latter a circular thrust plate is forged which works in a thrust box fitted with brass bearings above which is the square rod head which takes the handle. Thus the power is applied to the male screw which when
revolved enters the hollow pipe drawing it and the attached gate or plug upwards in the same way by reverse action the pipe rod is forced downwards. This method of screw gear is far superior to that commonly employed which is to adopt a solid rod threaded at the upper end. This screwed end is embraced at the top by a short female screw with a thrust flange and box. In this case power is applied to the female screw and the solid rod passes through it rising above. This system necessitates a long heavy expensive solid rod and further the screwed end rising above the platform is exposed to the weather whereas in that first described the screwed solid rod is only of a very short length viz that of the vertical play of the gate or plug and can easily be replaced when worn and the transmitting rod being hollow, is well suited to resist torsional as well as compressive strain. The solid screwed rod is further protected from the weather and from dust etc as no portion appears above the platform. Both these systems are illustrated in Chap XIV Figs 3 and 4. The second system is only suitable for the smaller sized plug holes and should never be adopted for sluice draw gates.

(48) Some other points require notice. The fore bay chamber is made only 2 feet in height and is shown such in the drawing in Fig 32. This limit
in depth is due to the want of proper grooves and lifting gear. The arrangement shown in the original plan in the Madras Irrigation Manual which has been only followed as far as the section of the culvert. If the chamber is exceedingly primitive. With proper men grooves the wire gate even without rollers could easily be lifted by means of wooden windlass under a very much greater main head than 3 feet which is apparently the limit. It is considered that the chamber should be at least 3 feet high to enable it to be inspected except in the case of very small tanks.

(50) The Mahadevi Tank outlet (Figs. 35 and 36) is a good example of the design of an outlet through a very high embankment the crest of which is 72 feet above cut. In such circumstances the usual plan followed would be of pipes in a culvert or barrel drum with a valve tower—is shown in Fig. 38. In this case however a centre or breast wall has been adopted but with wing cut short the rest of the earth slopes being sloped down in a curve and pitched with stone. It is in fact a short length of masonry drum interposed in an earthen dam. The site was used as a temporary escape during the construction of the dam and was consequently provided with a masonry floor. Further the lower part of the breast wall was used as an overfall. These temporary works can be utilised in this style of outlet which would not be the case if it consisted of a narrow culvert ending in a valve tower. If this were not so this type of construction would prove more expensive than a pipe culvert with tower. The other works connected with this project are given in Figs. 5, 5a, 5b, 6 and 6a of this chapter.

(51) The ordinary pattern of English waterworks towers is shown in Fig. 37 which is taken from Waterworks Engineering. The position of the inlet valves to the tower is adapted to draw the supply from any one of three levels in the reservoir as well as to scour or discharge the water from the bottom. The screen arrangement to ward off impurities would naturally not be required in an irrigation work. The dimensions of the wall of the tower which is circular are. Top thickness 2 feet which increases ½ foot for every 20 feet in depth below maximum surface level of the reservoir.
(52) In order to avoid all earth pressure on the tower, this latter is generally built well clear of the toe of the embankment. If, for economical reasons, it is deemed advisable to build it in the middle of the embankment, this can be done, if the section of the tower is increased to meet the stress thus liable to be brought upon it. The increase in thickness of the tower should naturally be on the far side from the embankment. This is well exemplified in Fig 38, a section of the Hurry Reservoir Embankment, for which we are likewise indebted to ‘Waterworks Engineering’. As will be seen, the culvert is cut in the solid ground; a procedure which should be followed wherever possible.

To allow for uneven settlement in the culvert due to the great pressure a slip joint is provided. This is shown in the section in question. The method of construction of the slip joint is fully explained in the text, to which the reader is referred.

The best section for a culvert to resist pressure is elliptical, with the shorter axis horizontal,
\[
\frac{\text{hor axis}}{\text{vert axis}} = 7, \text{ the lower third of the section truncated and closed with a flat invert.}
\]
The thickness of the arched wall of the culvert is obtained from the formula
\[
t = b \sqrt{\frac{H}{2}},
\]
in which \(t\) = thickness required in inches, \(b\) = the smaller diameter of the culvert in feet, \(H\) = height of superincumbent earth in feet.
(53) The best method of carrying pipes in a culvert is not to lay them on the floor as shown in Fig. 37 but to suspend them from the roof. This enables inspection to be much more easily effected.

Fig. 37 — Part Section of Hulh Waterworks Tower (1 in 1)

shows the pipes hanging from cross T beams built into the sides of the tunnel.

(54) The subject of pipe outlets from small tanks will now be dealt with. These usually consist of earthenware pipes similar to the Kothi pipes used in canal distributaries with either spigot and socket joints or else collar connections. In localities where earthenware pipes are difficult or expensive to obtain, excellent pipes can be made of fine cement concrete which is stronger than earthenware and can be moulded into any required shape. In the Ceylon Irrigation Department conical cement pipes are used. These are manufactured on the spot. While on a visit to Anuradhapura some fifteen years ago, the author inspected the manufacture of these pipes; details of which are given in Fig. 40.

As will be seen in the section of bank, the pipes are run up the fore slope of the embankment and are removed and replaced by hand in accordance with the level of the water in the tank and the head required. This is a far superior arrangement to the ordinary pipe head at bed level the closure of which is commonly effected by a man diving down under water and stuffing a handful of straw into the mouth of the outlet. Another arrangement for regulation is to erect a light wooden open staging over the outlet head. The conical pipes are then fixed vertically between three poles driven round them and the cultivator standing on the cross bars of the staging can remove or replace the pipes one by one as may be required leaving the spare ones on the staging or on the adjacent bank.

(55) When a tank embankment dams the course of a large stream which in flood time has to be passed through the reservoir, the question of the
possible prevention of silt deposit is a serious one. The river risen in flood pours water heavily charged with sediment into the reservoir, which sediment must nearly all deposit within it, thus gradually but surely diminishing its effective capacity. Scouring sluices, however powerful, will but palliate the evil, as their action is but local in its effect. In such cases the best remedy undoubtedly is to construct some works on the river before it reaches the area of the tank, whereby in heavy floods only the required proportion of the full flood discharge will be allowed to enter the tank, the rest being disposed of elsewhere into another drainage line. In cases when the whole discharge is required to fill the tank, the current can often, by means of a weir, be forced to spread over an area of flat country on either side, and made thus to deposit its silt on the land before it reaches the depression in which the reservoir is situated.

In a large reservoir a floating dredger will successfully keep down silt deposit. The possible prevention of silt deposit is a matter which should be carefully thought out on the initiation of any new reservoir project, as many old works have been rendered quite useless by silting up.

(56) An interesting paper on the Coolgardie Supply Reservoirs appeared in Vol. CLXII of the Minutes of the Proceedings of the Institute of Civil Engineers" from which the following information regarding a recent work, the largest ever constructed of its kind is deemed of interest —

To supply the mines at Coolgardie and Kalgoorlie situated 350 miles from the West Coast an immense reservoir was formed in the rainy belt near Fremantle, on the West Coast having a maximum capacity of 4,600 million gallons. The surplus falls over a weir which is the highest ever
constructed. Its section is given and discussed in Fig 35, Chap II. From this reservoir water has to be pumped, by eight pumping stations, the unprecedented distance of 360 miles.

Cast-iron pipes being clearly out of the question, steel pipes 28 feet long and about 26 feet diameter were used. These are of the locking-bar pattern. To quote the paper: "The pipe consists of two plates, each the full length of the pipe and each bent to a semicircle. The edges are burred or beaded to the shape of a dovetail, and are inserted in the open jaws of heavy longitudinal bars, which are subsequently closed cold on the edges of the plates, thus forming longitudinal dovetail joints. The pipes when in situ were jointed by a simple sleeve joint, the ring being 8 inches wide and $\frac{1}{2}$ inch larger diameter than the pipes bulging out to clear the lock bars."

Fig 41 is a section of the locking bar, open and closed. In Fig 41a is a section showing the sleeve joint enlarged, which is leaded, while Fig 41b is an elevation and two sections of the joint and pipe. Fig 41c is a section of the pipe way, showing the pipe as covered up by earth.

(57) The largest of the service reservoirs, the one at Balla Bulling, is formed of concrete reinforced by barbed wire, and provided with bituminous

joints right round near the toe of slope. This is to allow for expansion and contraction, as no concrete without such relief can stand the alternations of temperature in that climate without cracking.
In Figs. 42 and 42a we have a part section and plan of this reservoir. The value of this important work is $2,600,000.

In Canada, the Pembine Dam has lately been erected over the Red River at Winnipeg, which although strictly irrigation work is still of interest to engineers as illustrative of a new type. The conditions of the Red River are peculiar in as much as it rises south in the State of South Dakota and consequently comes down in heavy flood in the spring at a time when Lake Winnipeg and the lower reaches of the river itself are still ice bound. For this reason a movable dam such as will offer no serious obstruction to the outflow is a necessity. The object of the dam is to raise the water in the Red River to enable steamboats of large size to navigate in the summer months right up from Lake Winnipeg which they are at present unable to do. To effect this the water level at St. Andrew's Rapids has to be raised about 20 feet, which will then increase the depth at Winnipeg City by 6 feet. The following figures are illustrative of the work. — Fig. 43 is a map showing the Red River and the location of the dam with regard to the City of Winnipeg.
Figs. 44 and 45 are photographs of the work for all of which we are indebted to "Construction," an ably conducted Canadian professional magazine.
having been first constructed on the Seine. The principle of the movable dam consists in a large span girder bridge from which vertical winged supports carrying the curtain frames are let drop on to a low weir. When not required for use these vertical girders are hauled up into a horizontal position below the girder bridge and fastened there. In fact the principle is
very much that of a needle dam. The river is 800 feet wide and the bridge is of six spans of 138 feet.

The bridge is composed of three trusses two of which are free from internal cross bracing and carry tramlines with all the working apparatus of several sets of winches and hoists for manipulating the vertical girders and the curtain. The third truss is mainly to strengthen the bridge laterally and to carry the hinged ends of the vertical girders.

It will be understood that the surface exposed to wind pressure is exceptionally great so that the cross bracing is absolutely essential.
 CHAPTER XII—RESERVOIRS AND TANKS

Also the lateral support afforded by the heavy projection of the pier itself above flood level will be seen that there is a foot bridge opening in the pier. The foot bridge will carry winches for winding and unwinding the curtains and is formed by projecting as thrown out at the rear of each group of frames. It will admit through communication by a tramway. The curtains can be detached altogether from the frames and housed in the pier clear of the flood line.

The lower part of the works consists in a submerged weir of solid construction which runs right across the river, its crest is 7 feet 6 inches above LW at RL 68° 50' and the top of the curtains to which water is supplied is at RL 70° 6 at 14 feet higher. The dam actually holds up 31 feet of water above bed of river.

(59) The Cauvin curtain has given satisfaction in France and may possibly do so here. Certain grave disadvantages are however inherent in this system. Firstly the immense surface exposed to wind pressure which must always be a continual menace to its safety; secondly the expense of the work which must be great.
CHAPTER XIII

DESIGN OF CHANNELS

(1) The method pursued in designing a canal irrespective of its masonry works can only be treated in a general manner. In order to give actual examples of any value for instructive purposes maps of an irrigation project would be required with a host of statistics such as the levels of the country affected the amount of water available at low and high supply in the river the irrigable area besides the cost of the headworks necessary to give the required depth of water in the canal and many other matters. Such information belonging to an actual project not being available it would be very difficult to produce imaginary conditions whereby an example could be worked out in detail.

(2) The first point to be decided on is the water available in the river of supply with this information the designer will be able to form an opinion of the maximum and minimum discharge of the canal—regard being also had to the irrigable area commanded and to financial considerations.

The e being settled satisfactorily the depth of water in the canal is one of the first points to be decided on as also the sill level of the intake with regard to the weir crest and undersluice floor.

The limiting velocity with full supply will then determine the bed grade of the canal to carry its discharge with the fixed depth and this slope can be obtained by use of tables.

The width of the canal and its side slopes i.e. the sectional area of the water way can be simultaneously worked out.

Many canals have to run for many miles from their source of supply without any irrigation branch taking off how far depends on the slope of the country. As soon as the bed slope of the canal begins sensibly to gain on that of the country a fall will be required to keep the canal in cutting and at such sites branches generally take off. As the canal proceeds allowance must be made by reduction of the base width in each mile for absorption and evaporation and the same applies to branches and distributing.

(3) We have seen in Chap. VI that the question of the quantity and quality of the silt and sand carried in suspension by the water entering the canal forms one of the principal points to be considered in designing an irrigation channel. In most rivers the silt is of a fertilising character and consequently it is advantageous to adopt means whereby it can be conveyed right on to the fields irrigated instead of being deposited in the channels near the head.

The inclination given to the bed from point to point should be such that
CHAPTER XIII—DESIGN OF CHANNELS

As it is the ratio between velocity and water depth that determines the velocity of discharge of a stream, loss of checks in the velocity of discharge may cause the water to rise. The matter may be seen in the part of the channel which is in part of relatively less depth. The loss of the effective metal is due to this and it is to keep the rate of velocity as close as possible by high floods and to limit the top water at the strays. This will exclude the heavy sand which is not at rest on the bed as in the lower layers of the current. The evolution of the water on the bed is dealt with by resistance. A section of a canal will be of a short distance from the canal head. If and when more water is available than is required in the canal the escape can be opened so as to pick up and scour out any deposit which may be on the bed.

(4) The velocity in a main canal should be kept below that which would cause cession in the bed and banks. The neglect of this important point has led to immense damage in loss. In all the sections at the higher levels of a canal in Old India where the first lines were not designed on scientific principles, the velocity is the maximum values allow this —

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Velocity (feet per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light sandy soil</td>
<td>1 1/2 to 2</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>2</td>
</tr>
<tr>
<td>Ordinary heavy loam</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Still clay or gravelly soil</td>
<td>1</td>
</tr>
<tr>
<td>Pitched bed and banks</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Shingle and boulders</td>
<td>5 to 6</td>
</tr>
</tbody>
</table>

The erosive power of water varies with the volume carried and with the amount of silt in suspension. The maximum velocity adopted should be as high as possible in order to allow a fair velocity when the water supply is running otherwise the channels will become choked with water weeds.

(5) The discharge of a canal or distributary is based on the area irrigable and on the duty of water as the average that can be matured by 1 cubic foot per second flowing continuously for a definite time. The duty varies greatly for different crops seasons and variations in the rainfall.

In Upper India there are two distinct seasons for irrigation when different crops are raised. Firstly the Kharif that is the summer season from April 1st to September 30th for tropical crops such as rice indigo cane cotton, etc. and secondly the Rabi or winter season from October 1st to March 31st when crops common to Europe such as wheat barley peas, etc. are raised. But some crops such as sugar cane require irrigation for eight or ten months whilst others such as rice and vegetables may not need irrigation for more than two or three months.

* But see Editor's Notes at the end of this Chapter.
† In some Provinces the Kharif season is further divided into Dry Hot Weather and March to mid June and Monsoon or Rainy Season mid June to end of September.
The "duty" of the Kharif irrigation varies roughly from 40 to 120 acres, and of the Rabi season from 50 to 150 or even 250 acres. The loss of water between the head of a canal and the fields varies from 30 to 50 per cent.

To find the volume of water utilised, the number of days during which the crop is matured is required to be known. This is termed the "Base" of the duty. The volume utilised will then be found by the following formula:

\[V = \frac{B}{D} \times 86,400', \]
\[V \] being in cubic feet (86,400 being the number of seconds in a day of twenty-four hours).

Thus, supposing the duty \(D \) to be 60 acres, the base \(B \) 120 days, then \(V = \frac{120}{60} \times 86,400 = 172,800 \) cubic feet of water per acre. The depth in feet will be \(\frac{V}{43,560} = \frac{60}{51} \) or in this case \(\frac{120}{60} \times 1.5 = 32 \) feet.

This depth can be conveniently expressed in acre-feet, or symbolically \(\frac{B}{D} \), and, being in smaller numbers, appeals to the eye better than the volume given in cubic feet per acre.

(6) The use of acres 1 foot deep to represent the volume of water used or stored is most convenient in the case of reservoir or tank storage, the cubic contents of which expressed in acre-feet, instead of millions of cubic feet will then bear a definite ratio to the area of irrigation to be effected. Thus, if rice which requires 60 inches or 5 feet depth of water to bring to maturity is the crop to be irrigated from a tank, and the effective contents of the reservoir is 10,000 acre feet, then the irrigable area will be \(1000 \times 2 = 2000 \) acres.

(7) As already noted canals and distributaries should diminish gradually in bed width to allow for the loss due to percolation and absorption in addition to the reduction in the required water-way due to the taking off of branches or distributaries in the first case, or to that of irrigation channels in the latter case. Thus, supposing a canal is estimated to lose 20 per cent of its volume in a run of 100 miles, then, neglecting any loss from water drawn off into branches or distributaries, and assuming the maximum discharge at 3000 cubic feet per second at the head, the water-way at 100 miles distant should be calculated for a discharge of 3000 \((1 - \frac{1}{3}) = 2400\) cubic feet, at 50 miles, 3000 \((1 - \frac{1}{5}) = 2700\) cubic feet, and at 25 miles, 3000 \((1 - \frac{1}{7}) = 2850\) cubic feet. With the same bed slope the reduction in water-way can be best effected by a corresponding gradual reduction of the bed width.

It varies also of course even for the same crop or season, or canal according to the amount of rainfall, and at heads of distributaries or other such branches owing to loss of water by percolation, etc. etc. etc.

One cubic foot per second in a 24 hours = \(\frac{400}{415} \) cubic feet, and one acre = \(\frac{43,560 \text{ square feet}}{415} = 2 \times 7 \) cubic feet. One acre = one cubic or one second if done for \(\frac{400}{415} \) or \(\frac{2700}{2850} = 93.75 \).
(10) To ensure the economical distribution of water the system of rotation or as termed in India still has to be enforced. That is, that either the whole distributary is closed for a certain fixed number of days in each week running full supply* the rest of the time or if the distributary is kept continually running at the head certain lengths of it are closed in rotation. This system enables water to be carried down to the end of a distributary and gives to all cultivators a fair share of the water.

(11) In designing canals the discharge capacity will have to be considerably greater than the average discharge obtained from reckoning of duty.

The following example will explain the method of calculating the discharging capacity of a channel under assumed conditions. Area to be supplied 2,000 acres duty of water 60 acres then the average discharge of the channel should be \(\frac{1}{60} \times 2000 = 33 \) second feet. But if, as usually happens, the discharge on some days is less than 33, it must on other days be more; otherwise the average discharge will be less than 33. Thus the canal must be designed to a full capacity from 25 to 50 per cent in excess of the average supply deduced from duty.

(12) In India the whole subject of the periodical closure of distributaries or sections of distributaries and irrigated areas is worked out in advance in a complete manner with great exactitude so that the system is ready for immediate application as soon as the canals are opened. Very great stress is necessarily laid upon the scientific distribution of water and from a long course of many years of practical experience this science has been brought to a very high degree of perfection. The financial prospects of a canal system may be said to depend more on the proper distribution of the water available by means of closure tables than on anything else. In India the water-rate which forms the direct revenue of a canal is charged on the area irrigated. Not on the amount of water used; this apparently unscientific system is made to work well and to produce a high duty solely by the application of rules of intermittent supply carefully framed to suit each particular case. The measurement of water itself by modules or weirs as is practised in Italy and in the States would be impossible in India and in any case must involve great difficulty in practical application. In the case of the Calgary Canal, to be referred to later, water will eventually have to be measured out to some 6,000 customers each legally entitled to a fixed amount; this is an appalling prospect from the point of view of a canal establishment.

These matters of losses from absorption and of the closure system adopted are fully set out in Mr. Buckley's monumental work. The Irrigation Works of India and in Sir Hanbury Brown's Irrigation which latter valuable work deals with Egypt as well as India.

* See Editor’s Note (I) at end of this Chapter — Ed.
(13) Two examples will be given illustrative of the alignment of a canal and its branches.

Fig. 1 is a contour map of the Sidnai Canal in the Punjab. This is typical of a good disposition in a flat country. Distributaries as a rule should follow the lines of watershed and thus be free from interference with cross drainage and be enabled to irrigate on both sides. This ideal has been attained in several of the distributaries shown. The general fall of the country is a little over a foot per mile.

The Sidnai is a small canal discharging 2400 second-feet and commanding 200,000 acres. It takes out of the Ravi River.

(14) The second example is that of the new canal now being developed in Western Canada by the Canadian Pacific Railway Company, for the irrigation of a large tract in the dry zone east of the Rockies. Reference has already been made to this very important and interesting work in Chap IX, where three of the falls are illustrated and described also in Chap IX.

The conditions here are wholly different to those prevailing in the doabs of upper India. The surface is undulating and the slopes are steep. Nearly all the canals and distributaries are consequently side cutting and are only able to irrigate on one side. If a high ridge occurs, two distributaries have to compass it one on each side, often not far apart. The heavy slopes add greatly to the expenses of the distribution of water necessitating frequent small falls in the irrigating ditches and as the winding contour of the ground has to be hugged the length of the water way is very much increased above what it would be if a straight alignment were possible. This not only adds to the expenses of excavation but must considerably increase the losses of water due to absorption.
(15) The land grant belonging to the Canadian Pacific Railway as shown in fig 2 consists of about 3 million acres. Of this area it is proposed to actually irrigate on half or 1 1/2 million acres. This huge block is divided into three main sections in the western, central, and eastern of which the western consisting of 500,000 acres of irrigable land has already been brought into production. The nature of land tenure is peculiar. The company sell blocks of land to intending settler at $50 dollars or $5 an acre and the contract rate of $1 completion water supply right. According to the terms a law is promulgated in the province of Alberta land sold as irrigated is legally entitled to a water supply of 1 second foot for every 150 acres and the company selling the land is irrigated enters into bond to supply this amount of water to the settler. The water supply thus stipulated as in term the duty of the company. The company undertakes to deliver this water at certain commanding point on each quarter section of 160 acres. The supply is therefore not gross or even utilized at distribution points.

In the company's pamphlet it is assumed that a discharge of 2,000 second feet which is that of the present canal will irrigate 300,000 acres of the western section when under the conditions stated allowing for inevitable losses in transit due to absorption in the discharge at the head will have to be 3,000 to 3,500 second feet to effect the aforementioned area of irrigation, and to complete that of the whole project will necessitate a supply from the Bow River of 8,000 to 10,000 second feet if not more.

At present the land is not thickly settled but when it becomes so as is inevitable from the very favourable conditions of soil, climate, and price of land then the difficulty of supplying fixed quantities of water will begin to be felt and will present a problem that will tax to the utmost the organising powers of the present able irrigation establishment. In designing the channels no allowance was made for losses in transit, nor for intermittent supply or closure. All these matters therefore remain to be worked out, and will necessitate considerable eventual remodelling. It was probably in view of some such contingency that the works constructed are all of a temporary nature the policy of the company being to get the water through and some start made. It may safely be stated that no Indian administration would ever have undertaken such legal responsibilities as have been imposed on this irrigation company. This obligation unless considerably modified and relaxed must eventually result in troublesome litigation in which the settler has all the advantage.

(16) The Bow River has a minimum discharge of 6,000 second feet of which it is believed 4,000 have been granted to the company by the Government of Alberta. As we have seen this will be inadequate even for two sections consequently the whole low water supply of the river will eventually be required and any further supply can only be obtained by storage through the formation of reservoirs in some large depressions which can be filled by the canal during the winter months and drawn upon in the irrigating season. Fortunately the configuration of the ground lends itself to this arrangement.
The western canal head, or intake from the Bow River, is favourably situated clear of the high bluffs that fringe the river higher up, about a mile or more below the city of Calgary (see photo, page 244, Chap VIII). This location suffers, however, from one very serious defect which could only be remedied at considerable expense, and that is its position relative to the city.
CHAPTER VIII—DESIGN OF CHANNELS

The Bow River is perpetually bled by the sewage of the town which enters the main canal, and the water, uncontrolled, will become worse every year.

The result is that the canal water is not potable, and further the river is a mass of natural water-courses through which the canal water passes and likewise be similarly affected.

(17) The full depth of the main canal is 10 feet, which it returns for its whole length of 17 miles. The bed slope and width have three variation is beginning with a 60-foot bed width ending at 44 feet. This depth of the bed width is unusually high for a discharge of 2,000 second feet; a depth of 8 feet is the ordinarily accepted ratio. It will therefore a weir 6 or 8 feet in height across the Bow River to bring in full action, which has not yet been required. With a reduced depth of 4 feet in the canal a weir would still be a necessity, and the canal would be less have to be widened throughout so that the matter of the most usual bed depth is one of comparative cost as some of the cutting in the main canal is of a heavy description.

The main canal terminates at Reservoir No. 1 from which the so-called secondary canals, or B and C take out. This reservoir is a long natural depression which formation is a common feature in this undulating prairie country and which has been fully taken advantage of in the alignment of the canal. The branches B and C are shown on part of their course on the map (Fig. 2) as dotted lines. This means that long natural depressions are made use of. Some of these which are very deep can be embanked and used as reservoirs to be drawn upon as occasion demands and they are of great advantage for watering stock. Reservoir No. 1 is 40 feet deep in places, only a few feet at the surface can, however, in this case be drawn upon as storage.

The secondary canals are of about 30 feet bed width and 8 feet deep at their heads and are altogether 150 miles long. The distributing ditches will total 800 miles.

The secondary canals correspond more or less with large Indian *rajbahas*, or distributaries the ditches with village water-courses.

The allowed mean velocity in the branches averages 2.3 to 2.7 feet per second, the soil being very friable this is about the limit which could be adopted without erosion. The side slopes are 2 to 1 and unusually flat inclination. Most Indian canals are dug out 1 to 1 and eventually the side slopes are supposed to sit up to 3 to 1 (Fig. 3 is a view of the heavy side cutting near the canal head at Calgary).

(18) The western section already effects a considerable amount of irrigation. The soil differs from the black soil of the so called prehistoric Lake Agassiz, which covers the greater parts of the provinces of Saskatchewan and Manitoba in colour and texture. It is lighter and has not the great depth peculiar to the more eastern provinces. The soil in which is nothing more or less than a variety of the familiar black cotton soil of India, sticky when wet, hard and split up when dry. The Alberta soil is, however, very fertile and only needs water to raise the most astonishing out turn of wheat, sugar beet and other valuable crops.
The canal extension in the eastern section has lately been put in hand. This portion will be supplied by a new intake from the Bow River, situated at Horse Shoe Bend, near the railway station of Bassano.
The river will be dammed by a masonry or concrete weir 10 feet in height which is believed to be under construction. The settlement of this section is now being proceeded with. This reclamation closely resembles that so successfully attempted on the Lower Chunnah Canal in India. The central section will be supplied from the existing Calgary intake assisted by several natural reservoirs, the principal of which is the picturesquely termed Dead Horse Lake, recently altered to Dawn on Lake.

These reservoirs can be filled in the unnavigable season and drawn upon later. This system of intermediate storage is a novel and most interesting feature and its successful working out should be watched with interest by the profession.

The main canal branches will have to be widened to carry the additional supply of the central section probably to the eventual total extent of 5,000 second feet. The author had the privilege of being taken round a portion of the western section by Mr. H. B. Mucklestone, Chief Division Engineer, who from having mainly to do with the design of these complicated works was well qualified to afford information on technical points.

This officer's first experience in velocity observations of a practical nature was in the Johnstown reservoir disaster from the flood waters of which, like Moses of old, he was rescued when a child. The Johnstown (Pennsylvania) flood brought about by the bursting of a reservoir is notorious as the most disastrous on record. Fig. 4 is that of an Inspection House in the western section and will be interesting to Indian irrigation officers who spend a large portion of their official lives in canal chokies.

(19) Canals in the North West have only one irrigating season as in winter ice and snow cover the country. The winters in Southern Alberta are however much milder than in Manitoba and Saskatchewan owing to the proximity of the Pacific Ocean and the warm Japan Gulf Stream which laves the western coast.

The canals can therefore be used for water carriage to reservoirs during the best part of the winter.

In British Columbia considerable orchard irrigation is effected, but the canals are on a very small scale. Mountain streams are intercepted and
conveyed by ditches dug along a falling contour in the hill-sides to the orchards and fields. Irrigated land here sells for 200 or 300 dollars, i.e., £40 to £60 an acre, so that irrigation is an exceedingly profitable undertaking.
Water is however, deficient, and storage works will soon become an urgent necessity.

The valleys with large lakes are occupied and cultivated but the high
plateaus on top of the adjacent hills are at present a waste except as a cattle range, being almost impenetrable owing to fallen timber. Here large lakes of water exist which could be made to form reservoirs for irrigation and mining purposes.

Some rivers, such as the Simlikameen, which flows into Washington State, present tempting prospects of irrigation, and their wide deep beds could be transformed into a series of large reservoirs. Unfortunately the Northern Pacific, an American railroad, has been allowed to run their Vancouver approach line up this particular valley, thus effectively hindering any such future utilisation of its flood waters.

(20) The two illustrations, 5 and 6, depict Western methods of excavation which are of interest when contrasted with Asiatic practice in effecting the same purpose.

Editor’s Notes

(S) *Mean Velocities—Silt and Scour (par. 4)*—It has long since been recognised that the erosive and the silt-transporting power of a current of water depends, not on its absolute velocity, but on its relative velocity, relatively, that is to say, to the depth and width of the stream. In the year 1867 Mr T. Login, an executive engineer of the Upper Ganges Canal, as the result of observations made on that canal during the period 1856-63, expressed opinion in a Paper read to the Institute of Civil Engineers (Vol. XXVII), “That the power of water to hold matter in suspension varies directly as the velocity and inversely as the depth.” This came to be known in Europe and America as “the Indian theory.” In 1863, in his treatise “Etudes Théoriques et Pratiques sur les mouvements des Eaux Courantes,” M. Duput showed that, if sand or gravel be placed in water in a vase which is caused to rotate, the heavier bodies are carried up in the water, in proportion to the difference of the centrifugal to right and left of a solid body, engenders a force which pushes it to the side of the more rapid filaments. The relative velocity of the filaments in the vertical direction will engender a pressure which will carry it to the side of the more rapid, i.e., it will act from below to above.

In 1894, as the result of experimental observations of flow in channels of the Upper Bani Dard Canal, Mr. R. G. Kennedy, a Punjab irrigation engineer, presented to the Institute of Civil Engineers a Paper containing an empirical formula as a guide to the design of irrigation canals, with a view to the prevention of silt deposits or erosion of bed. This formula was

\[V_o = \frac{c}{d} = 0.84 d^{0.61}, \]

wherein \(d\) represents the water-depth of the stream, and \(V_o\) the “critical” mean velocity, which is the minimum necessary to prevent silt deposit, and the maximum consistent with freedom from erosion in soil of average firmness.

Since the year 1900, or thereabouts, this formula has met with considerable acceptance in India, and even outside of India, though it has been considered necessary to modify the numerical values of the constant and of the index in different localities. The engineers of Sind say that their critical velocity is about 0.75 of Kennedy’s \(V_o\), the engineers of an irrigation canal off-taking from the Colorado River at Yuma (Cal., U.S.A.) modify the
cill of Canal Head = 450 feet. Then discharge per foot-run = \(\frac{10,000}{450} = 22.2 \). Let the cill be at or above canal water-surface, so that the entry is by 'free' overfall. Then \(3.33h^3 = 22.2 \), and the depth of water over cill will be \(h = 3.54 \) feet. The mean velocity of entry, \(v = \frac{22.2}{3.54} = 6.27 \) (say, 6.3) and maximum velocity, at cill level, \(v_{mr} = 6.27 \times 1.5 = 9.4 \).

Let \(\delta_{mr} \) be the elevation of cill above river bed, i.e., above the level down to which bed can be kept scoured by weir-slurces. Then, from \(\frac{v_{mr}}{\delta_{mr}} = 0.77 = \frac{0.4}{\delta_{mr}} \), we deduce \(\delta_{mr} = 12.2 \) feet. This gives the appropriate level of the cill. Instead, however, of building the crest-wall up to that height, it may be built up to 6.5 feet only, but, furnished with a movable gate-cill, sliding in a groove behind it, up to the required level (see Fig 8a). It is only in the high-water (or flood) season that the cill is needed as a silt-excluder. In the low-water season the gate-cill may be sunk behind the masonry crest-wall.

Or, the masonry crest-wall may be built 8 feet high, in which case the cill gate, also 8 feet high, can rise to 15.75 feet above river bed, and, by abutting against a lintel at that level, close the canal altogether.

In the foregoing, the Silt-Index of canal head has been based on the maximum velocity of entry, at cill level. If we had based it on the mean velocity, whose level would be \(\frac{1}{3} h \) above cill, the equation would have been

\[\frac{v}{\delta_r} = 0.77 = \frac{6.27}{\delta_r} \]

Whence \(\delta_r = 8 \times 1 = \text{height of cill.} \)

Working on the maximum velocity, we may make the cill 12.2 feet high, instead of 8.1 feet only, by way of factor of safety against the more violent nature of the eddies—both horizontal and vertical—set up by the cill, and cut water piers, if the waterways of the canal head be relatively narrow and conducive to eddying.

In the foregoing illustration, we have designed the gate-cill to discharge by "free" overfall, for the sake of simplicity of calculation. That condition is not, however, absolutely essential. The gate-cill may be submerged below tail-water, and yet serve efficiently for cill-exclusion, so long as \(\frac{v}{\delta_r} \) or \(\frac{v}{\delta_{mr}} \) does not exceed 0.8.
The table is an approximate representation of the comparative force of the head of water at the several cross-sections of a canal, apart from the losses due to friction. In the table, the column headed "Q = e a d" represents the loss in cubic feet per second due to friction, where "Q" is the discharge in cubic feet per second, "e" is the coefficient of friction, "a" is the area of the canal, and "d" is the depth of water in the canal. The values in the table are calculated using the formula "Q = e a d." The losses in cubic feet per second are further converted to inches per foot of width. The table is followed by a table that calculates losses in a canal with a bed width of 200 feet and a slope of 6 250 side slopes. The losses are calculated using the formula "Q = Loss by absorption (cusecs)."
The loss per unit area of surface varies directly as the water-depth, but the percentage of discharge lost varies inversely with the water depth. Hence the advantage of working canals under full supply conditions as far as possible.

In the Punjab a record is maintained of the daily water supplies passed into each canal at its head, and also a similar account for each distributary head. The difference between supply at canal head and the aggregate supplies delivered to distributaries represents the volume lost by absorption in the canal. The table below shows the absorption calculated by formula, as compared with the losses thus recorded statistically during the twelve-year period 1899—1912, for the principal perennial canals of the Punjab, the unit discharges recorded being "day-cusecs," or cusecs flowing for twenty-four hours.

<table>
<thead>
<tr>
<th>Canal</th>
<th>Statistical record</th>
<th>Canal musage</th>
<th>Absorption losses</th>
<th>Per mile</th>
<th>Per cent of discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average flow</td>
<td>Loss by absorption</td>
<td>By statistical</td>
<td>By formula</td>
<td>By statistics</td>
</tr>
<tr>
<td></td>
<td>(cusecs)</td>
<td>(cusecs)</td>
<td>record</td>
<td>formula</td>
<td></td>
</tr>
<tr>
<td>Upper Bari Doab</td>
<td>6,500</td>
<td>5,045</td>
<td>895</td>
<td>893</td>
<td>340</td>
</tr>
<tr>
<td>Sirhind</td>
<td>8,000</td>
<td>5,175</td>
<td>881</td>
<td>913</td>
<td>482</td>
</tr>
<tr>
<td>Lower Chenab</td>
<td>10,730</td>
<td>8,822</td>
<td>1,497</td>
<td>1,622</td>
<td>428</td>
</tr>
<tr>
<td>Totals</td>
<td>25,230</td>
<td>19,043</td>
<td>3,273</td>
<td>3,428</td>
<td>1,250</td>
</tr>
</tbody>
</table>

From which we may infer that the absorption losses of canals of those magnitudes are about 17.5 per cent of average flow at canal head, and about 2.7 cusecs per mile of canal.

(U) Duty and Full Supply Factor—More misconception is prevalent on this subject than on any other question of irrigation. "Duty" stands to "F.S. Factor" in the inverse ratio of "average demand" to "peak demand." "Duty" is the area irrigated by a canal, in acres, in an understood period of time, divided by the "average supply" of the canal in cusecs in that time. "F.S. Factor," or "full capacity duty," is the same area, divided by the full capacity in cusecs of the canal. The period of time understood is the Khairf season, from April 1st to September 30th, or the Rabi season, from October 1st to March 31st. If any other period be reckoned with, it should be specified, otherwise the "duty" will be either meaningless or misleading. The volumetric record of canal flow is maintained in terms of the "day cusec" as unit, though the prefix "day," being understood, is usually omitted in common parlance. Fortunately the day cusec (86,400 cubic feet) is roughly equal to 2 acre-feet (43,560 × 2), and the volumetric supply in acre-feet per acre irrigated, can be conveniently expressed by the Greek letter "Δ."
The "di" is measured at canal-head, or at head of the private watercourse "absorption" en route.

In the summer there is usually plenty of water available for irrigation canals, yet, owing to the vicissitudes of agriculture they flow to full capacity only for brief periods of peak demand. In the Punjab their average Kharif flow is usually about 80 per cent of full capacity. The kharif rajbaha-head "duty" is usually 100 acres per cusec of average supply. Thus a rajbaha of say 150 cusecs capacity will have an average kharif supply of 120 cusecs, and, with that should irrigate 12,000 acres. And its "Kharif F S Factor" will be $12,000/150 = 80$. In designing new channels the F S Factor should be reckoned with, in order to arrive at the "full capacity" of design, but it is a common mistake to confuse "F S F" with "Duty." This mistake appears to have been made in the design of the "Rice Canals" of the Sukkur Barrage Irrigation Project, of Sind, now under execution. Since about 20 per cent of canal head supply is lost by absorption between canal head and rajbaha heads, 25 per cent must be added to the aggregate full capacities of rajbahs, in order to arrive at full capacity at canal-head.

The duration of irrigation of a rice crop may be two or three months, or even five months. In case of such crops the term "duty" should not be used without specification of period, the water account should be kept in terms of "acre-feet per acre irrigated," or of "Δ".

The "duty" of irrigation water in the rabi season is approximately double of that in the Kharif season, excluding rice irrigation. The ratio of Δ usually are — Rabi: Kharif (barring rice) Rice 1:2:4.

(V) Design of Channels — When designing a new canal system, the culturable area of the tract to be irrigated should first be ascertained, and then the proportions of that area to be irrigated annually should be decided. This may vary between 20 and 80 per cent, according to the amount of water available, or the risk, if any, there may be of waterlogging the soil by excessive irrigation. Next, of the annually irrigable area it should be decided how much to irrigate in the kharif, and how much in the rabi season. The usual proportions are $K = R, or 2K = R$. If the winter water supply be scanty, or if there be serious risk of waterlogging, the former ratio is preferable, the more especially because the summer flow contains more fertilising silt than that of the winter, but $K = R$ means canal capacities 50 per cent greater (and more expensive) than $2K = R$. Thus, suppose we have to irrigate 30,000 acres annually.

If $K = R = 15,000$, acres, and "Duty" = kharif 100, rabi 200, we require Average Supply Kharif 150, and Rabi 75 cusecs.

But if $K = 10,000, R = 20,000$ acres, then average supply = $K = R = 100$ cusecs. And full capacity is 25 per cent greater than kharif average supply. The capacities of a Rajbaha should be reckoned, reach by reach, from its tail, upstreamwards, by dividing the kharif area to be irrigated from each reach by the kharif F S I° of 80 acres per cusec, and adding up the volumes thus determined.
CHAPTER XIV

SCREW GEAR FOR TANK SLUICES, AND ROLLER GATES

(1) It is proposed in this chapter to give a short account of the best type of screw lifting gear suitable for tank sluices, as also of different types of rollers in use in vertical draw sluice gates.

Figs 1 to 4 and Fig 7 are rough sketches illustrative of the principle of different systems of screw lifting gear. In Fig 1 the motive power is applied to a female screw cut in the base of the handle itself. On revolving the handle the solid screw, rising, lifts the gate, but there is no means of forcing

the gate down, unless its dead weight is sufficient for the purpose. The author has actually seen this extremely primitive gear applied to wooden sluices of Government tanks in Burma, and was privileged to witness the operation of lowering the gate against a head of water.

The procedure adopted was for one cultivator to stand and jump on the gate while his companion belaboured the top of the screw rod with a large stone, the handle having been previously run up to the top. The screw rod it may be added, was fixed to the gate at its lower extremity and so could not itself revolve.

(2) In Fig 2 the motive power is applied to the screw rod, the female screw being cut in the head of the standard. In this case the screw rod itself revolves, and consequently has to be provided with a dog chain swivel joint.
either at the gate fastening or preferably as near the screw head as possible thus reducing the torsional stress on the rod. The handle rises and falls with the rod to the extremity of which it is keyed.

This type is a great advance on the last and is quite suitable for no plugs which are only lifted 2 feet at the outside. The swivel should be prevented from turning by two arms which slide up and down guide rod. This is shown roughly in the sketch.

(8) Figs 3, 4 and 5 represent the ordinarily adopted lifting gear in which the female screw is revolved. The solid screw rod connected with the ga

![Diagram](image)

passes through the former and rises above the platform. This arrangement is on the same principle as Fig 1, only the female screw itself is prevent from rising by the use of a thrust plate which either works in an annul groove cast in the brass screw head as in Fig 3 or itself is provided with holding down as well as a base plate which embrace a circular collar cast screwed on to the head piece as in Fig 4.

In Fig 3 the steel or iron plate is in two halves and each half is proud with a slot as shown in plan. This enables the two halves of the thrust plate to be disengaged and removed by slackening the fastening nuts and pushing the plates backward the bolts traversing the slot. The author has several of these employed in lifting tank sluices but they proved very hard to work. In Fig 4 the holding down upper plate is in one piece the large female screw being provided in this case with a collar at its base.

![Diagram](image)
taken from the Madras Manual and exemplifies the usual Madras practice where screws are very commonly employed. In this case the thrust plate also is in one piece and is slipped over the projecting shoulder of the brass screw head and bolted in position. If this thrust plate is truly cast and planed it should be as good as if not preferable to the form illustrated in Fig 3.

(4) Fig 6 represents another development of the same principle and is used in Madras for lifting a series of grates one above another which close the larger openings of weir sluices or head regulators. As already men
toned in previous chapters this style of lifting gear for such purposes is now completely obsolete. The introduction of anti-friction rollers enables gates when released to fall into position by their own weight without requiring the application of any power to force them down against a head of water. Hence they can be lifted by a travelling winch in an arrangement much more economical than the lines of long expensive screw rods shown in Fig 6. In this gear the female screw is formed at the end of a long pipe, at the top of which pipe is a solid head to which the power handle is applied and which is held fixed by a thrust plate. As the pipe is revolved to raise the gate, the solid rod attached to the latter is drawn up inside the pipe being thus protected from dust or water.

As screws in future are never likely to be employed except for very short lifts such as those of small deep reservoir sluices of which the outside lift is 3 feet, it is quite clear that the principle of the motive power being applied to the short hollow screw thus involving a long solid screw rod subjected to compressional and torsional stress is not at all economical.

(5) The arrangement illustrated in Fig 7 is undoubtedly far superior to the former. In this, the power is applied to the male screw which can be quite short a little over the lift in length. This should be of solid cast steel as shown in the illustration; the thrust collar and plates are situated at the rod head and consist of three plates, the upper the distance plate and the base plate. The screw rod is threaded through the base plate while the upper plates are superimposed and the whole bolted through as shown on plan (Fig 7). The upper and lower plates should be of brass; the middle distance plate which is subjected to no strain of friction being of plated iron or else the middle and top plate could be combined in one piece of brass as in Fig 4. The solid screw rod passes into a pipe in the head of which is the female screw. This should be of brass and in some cases the whole pipe is made of brass but this seems a needless extravagance. The pipe head is held rigid by two arms running in guide slots cut in the frame of the standard.
torsional stress is at once absorbed, and the position of the ends of the arms, one of which can be made to project beyond the frame, indicate, by means of a pointer on a graduated scale, the exact height at which the gate stands above its sill. The pipe is rigidly connected with the gate, and from its ring section is clearly much better suited to withstand compression than a solid rod of greater weight of metal. It can also be made of ordinary gas or water piping. The introduction of ball bearings above and below the thrust discs would be a further improvement.

(6) This system for short lifts is by far the best of any other illustrated in these figures. It is remarkable that it is not given in the "Madras Manual," all the screw lifting gear in which are of the other types, in which the motive power is applied to the female screw. The only tank sluice fitted with this gear seen by the author was that in Kalawewa Tank, in Ceylon. In this hand wheel turned a worm, or archimedean screw, which engaged a bevel wheel keyed onto the top of the shaft. The sluice gate in this case was 3 feet square under a head of 25 feet, and yet the gate was manipulated with the greatest ease by one man.

The screw heads or standards, can be supported on wooden beams or a cast-iron fish-belled girder with double webs. Two rolled beams connected by a plate bolted to their upper flanges would suit equally well, the lifting rod passing between their webs.

(7) Fig. 8 represents a group of three screws which operate the pipe valves in the Waghad Tank outlet culvert which are shown in Fig. 1, Chap. XII. These are on the principle of Fig. 7. At the top is a thrust box containing brasses with hollow annular ways in which similar annular projections on the steel screw rod work. Below is a hollow square pillar in the head of which is a female screw, engaged by the screw of the lifting rod. To the base of the pillar, which is moved up and down through a square bracket bearing the lifting rod of the gate is attached.

(8) Fig. 9 is on the same good principle, but in an improved style. Here the lifting screw works against a step at its base and is provided with a thrust collar working in a brass thrust box at the top. It is therefore practically independent of any deviation from the exact alignment of the gate lifting rod, and is thus not subjected to other legitimate stresses. The lifting screw is enclosed in a round cast-iron standard, in the hollow pipe of
which a circular brass stud is free to move. In this is cut the female screw and it is prevented from revolving by projecting arms which run in two slots cut in the side of the box as in Fig 7. To these projections two links are attached which latter below the frame are joined by a cross bar or pin on which the gate lifting rod is keyed. Instead of the clumsy capstan bar a bevel wheel could be keyed on the top of the screw rod and a bracket fitted to the frame or cast on it would carry a pinion and hand wheel. The hand wheel could be made removable to prevent unauthorized tampering with the sluices. Ball bearings should also be arranged for at the thrust collars.

(9) An example of American lifting gear taken from Wilson's Irrigation Engineering is given in Fig 10. Here a bevel wheel is keyed on the female screw block which is held in the jaw of the cast iron frame carrying the pinion wheel and hand wheel.

Steel ball bearing dies are fitted at the base of the female screw block where it bears against the frame. The lifting screw is set in square above the screw and past the nut square hole in a projection at the base of the cast iron frame.
This arrangement is obviously inferior to that of the two last examples in that the screw is exposed in the open to dust and rain and when the sluice gates are open sticks up in an absurd manner as if to invite damage whereas in the other case the screw is protected from injury of any kind being enclosed in a box out of sight. Length of rod is also saved. This apparatus or one in which a pinion engages a rack appears to be universal in the

![Diagram](image)

Fig. 9 — Battman’s Screw Lift Gear

States The adoption of ball or roller bearings at the points of thrust is worthy of imitation.

(10) A very instructive example is given in Figs 11, 117 and 11b of the screw lifting gear of the Bhagatgarh Dam underslucseed section of which is given in Fig 17 Chap II and for which we are indebted to The Irrigation Works of India. These sluice gates have a lift of 8 feet under a mean head of 80 feet the area of the sluice ways being 8 feet by 4 feet the pressure on
each is therefore \(h \cdot 4 = \frac{1}{16} \times 80 \times 4 \times 8 = 71 \) tons. The screw rod is 5\(\frac{1}{4} \) inches diameter for the screwed upper length the remainder being 5\(\frac{1}{4} \) inches square. These heavy expensive forged rods are about 87 feet in total length though made up in \(10\frac{1}{2} \) feet lengths and are supported at intervals against buckling by passing through square holes in brackets projecting from the rear face of the dam.

The motive power is as usual applied to the brass female screw which is provided outside with two collars which work in corresponding grooves in a thrust box. This latter which is of cast iron is in two pieces bolted together horizontally and further provided with the usual vertical holding down bolts (wide plan of lifting nut collar etc in Fig 11a). The squared part of the rod commences at the termination of the screwed upper part which has a run of 8 feet and this passes through a square brass guide which prevents the rod revolving and relieves it of any torsional strain below this point. The screw lifting rod rises through the capstan nut and when the gate is fully open must stick out some 9 feet above the platform level on top of the dam.

(11) This manifestly unsuitable arrangement could easily be avoided by adopting the general design of Fig 7, 8 or 9 viz. of applying the motive power to the male screw which latter being provided with a collar working in a thrust box is prevented from vertical movement but not from revolving. The female screw would be placed in the head of a long cast iron pipe which is fastened to the gate and which is prevented from revolving by attached arms the extremities of which slide in vertical grooves and is of course free to move vertically in either sense. It is quite evident that this
arrangement would be much less expensive and equally effective as that portrayed in Fig 11.

A further improvement would be to apply bevel gearing to the screw head in lieu of the capstan, which has to be worked by several men. A bevel spur wheel could be fixed horizontally on the rod head, worked by one or two bevelled pinions turned by wheel handles revolving vertically, and anti friction rollers above and below the thrust collars.

(12) The principle of the application of free rollers and roller wheels fixed on axles to draw gates, together with the devices employed in rendering the gate watertight will now be briefly noticed.

When a gate or shutter slides in a groove, the pressure of the water forces it against the inner side of the vertical grooves, as also against the
lintel at the top and the sill at the bottom thus effectually preventing any leakage on all four sides of the shutter. The resistance of the friction of the end side of the gate against that of the grooves is very considerable and as the parts in contact cannot be lubricated and the gate often remains unmoved for a long time the parts become rusty and the friction is thus increased greatly in excess of what would normally be the case. Now the coefficient of friction of smooth metal surfaces in contact unlubricated is about 2. Thus if a gate were subjected to a horizontal water pressure of 1000 lbs it could be lifted neglecting its own weight by a force of 1000 × 2 = 200 lbs. On the other hand when the surfaces are not smooth the coefficient of friction may possibly become as great as unity. Hence a gate without rollers requires power not only to lift it but to force it down as its own submerged weight is insufficient to overcome the friction induced by the pressure of the water. Thus is the reason why screw power has hitherto been so largely used as lifting apparatus.

By the simple device of mounting the gate on wheels with axle bearings the friction is greatly diminished so that the requisite lifting power is considerably reduced and none is required to lower the gate that being effected by its own weight.

The combined axle and roller friction now induced which is similar to that of a railway truck can be taken as one eightieth of the water pressure plus the weight of the gate itself in the process of lifting. Thus the net lifting power required supposing the water pressure to be 1000 lbs would be \(\frac{1000}{80} = (12.5 + 11) \) lbs.

If the axle bearings are not lubricated the coefficient of friction will naturally be much greater. Within certain limits a roller wheel of large diameter would give better results than one of smaller size. The rolling friction induced between the wheel rim and the surface would be less in the former case and in addition the leverage of the greater wheel radius acts in favour of the motive power.

(18) When a roller or wheel is used with a gate there is naturally no close contact between the side of the gate and that of the sluice opening or of the table of the groove the gate being raised off it. In order to prevent leakage through this opening the device of stanching rods is usually adopted which consists generally of a round solid rod or else gas piping which is fastened to the gate at the top only the rest hanging free. The pressure of the water
forces this against the opening slit existing between the gate and the jamb, or shoulder of the masonry, forming a perfect watertight closure. When the gate is pulled up or down the stanching rod goes with it, scraping against the jamb, the friction thus set up is quite negligible.

With Indian roller gates stanching rods do not appear to be employed. A watertight connection is formed by either slightly inclining the roller path or else the gate, so that when the gate is fully down close connection is formed. In India stanching is commonly effected by means of basketfuls of stable, or cow-shed litter applied up stream of the leaky passage. It is not an elegant mechanical device, but effectively staunch.

(14) Gate rollers or wheels consist either of small solid rollers mounted on axles which pass through axle boxes fixed to the gate. The method formerly used in the Chenab weir-sluce gates is exhibited in Fig 12.

![Figure 12: Middle Gate of Chenab Weir Sluices](image)

Recently this type of gate has been scrapped and "Stoney" pattern live-roller gates, in one piece, substituted.

In other sluice gates the rollers consist of a pair of trolley wheels with long axle bars reaching across with the wheels keyed on, as in the case of a railway truck. The large regulating gates across the Rhone at Geneva which are 25 x 10 or x 15, are mounted on quite large wheels keyed on shafts, the wheels being double flanged and working on an ordinary vertical steel rail fixed upright against the jambs or shoulders of the sluice opening.

In Indian and Egyptian works, draw gates usually work in cast-iron grooves, the grooves protect the lifting chains from the current and afford a recess in which the chains hang safely when the gates are in place, and are disconnected from the travelling winch.

A great improvement would be to adopt forced axle lubrication as is done to "Stoney" gate rollers by flexible tubes connecting with the surface. The journals could then be packed in watertight stuffing boxes like the piston of a stream cylinder.

(15) We have hitherto considered the combined axle and rolling friction which is induced by small wheels fixed on axles running in bearings bolted to
the gate. When, however, the pressure is very considerable, due to a great head of water or the exceptional dimensions of the opening, another arrangement, viz., that of free rollers, is made use of. These rollers run on axles, but there is no pressure induced on the latter, the axles are only used to keep the rollers the proper distance apart, and are fixed in a frame. This roller cradle is suspended in the groove unattached to the gate. As the side of the gate bears against the rollers, when the former is moved the rollers revolve, and the whole frame of rollers rises, and also falls, with the gate. The friction induced is pure roller friction, which, between smooth surfaces, is something very small indeed, so much so that its coefficient can be entirely ignored, the lifting power being only the weight of the gate plus the friction of the lifting apparatus. Again, under suitable conditions, the gate can be counter posed by weights hanging from overhead pulleys, and in such cases gates of the largest size can be manipulated by one man. These free rollers are termed Stoney's Patent Anti friction Rollers.

The diagrams in Fig 13 represent a sluice gate fitted with free rollers in sectional plan and elevation. It will be seen that the frame of the gate on plan just clears the sluice wall and projects beyond the groove. These spaces are closed by stanching rods. These are simple round rods of about 2 inches diameter which are fastened to the gate, but have lateral play, so that when the gate is under pressure they are forced into the corner, effectually closing the aperture. On the gate being raised they are carried out with it, still bearing against the side of the gate and the sluice wall, the friction thus induced is however, quite trifling. Owing to the suspending pulleys the roller frame moves half as fast as the gate.

(16) In Fig 14, which is derived from Vol CLII, "Min Pro Inst CE," the details of the roller gates used in the sluices of the Assuan Dam viz., those at RL 100 00, are given. The following is the description by Mr F W Scott Stokes, M Inst C E, the author of the paper on the sluices and lock gates of the Assuan Dam:

\[\text{Sluices at RL 96 and RL 100} \] (Fig 14)

"The culverts are 2 metres (6 feet 6½ inches) wide by 3.5 metres (11 feet 6 inches) high. The entrance to the culvert is well mouthed and is roofed over by a casting curved on the dam face, and flat at the place where it joins the sluice lintel. The grooves, lintel, and sill of the sluice are of cast iron.
arranged with machine faces, and put together with turned bolts. The sluice is built up of a steel plate skin with rolled strengthening girders at the back, framed into cast iron beams on each side, which form the roller paths. Adjustable bars are fitted on each side of the face to reduce the leakage, as wear takes place owing to the cutting action of the silt in the water. On the top of the sluice is also fitted an adjustable bar, which shuts down on the lintel at the same moment that the bottom of the skin lands on the sill, and thus makes a watertight joint. The rollers are arranged in cradles formed of flat bars and are hung in position on each side of the gates by steel wire ropes. The crab has two speeds of lift, namely, for small adjustments by one man, or for quick working by four. An automatic self-sustaining gear is provided so that the sluice (which is not counterbalanced in any way) cannot run down, the handles having to be turned when lowering in order to release the gear. The barrel shaft is worked by means of a worm wheel, and a worm fitted with a ball thrust bearing. All the bearings and pulleys are fitted with screw down grease lubricators, this being the more advisable owing to the sand and dust.
(17) These twenty-five sluices are 7 metres (23 feet) high by 2 metres (6 feet 6½ inches) wide, and are for the purpose of regulation when the fifty without rollers have been lowered, and before the water rises high enough for those at R L 96 and R L 100 to give the required discharge.

As the head above cill level is 14 metres (45 feet 11 inches) the rollers and other parts have to be of much more ample proportions and the grooves built into the masonry of considerably larger size than those of the sluices of R L 100 and R L 96. The action of the water passing through the culvert at a high velocity has also to be avoided hence the rollers are kept well back from the face, and an inclined shield plate is provided to protect them from a direct flow. A whirlpool motion is set up in the grooves, but it is not of sufficient force to disturb the rollers hanging below the bottom of the gate when raised. The grooves are built of four sections weighing about 2 tons each. They are bolted together with turned bolts, and are arranged with projections on each side to key into the masonry and prevent
the leakage of water round the back. The sluice is built of heavy specially rolled steel joints with steel skin plates and cast iron roller path guiders on each side.

A vertical rod which is contained in a groove bolted to the skin on each side of the face is pressed by the water into the corner formed by the face of the sluice and the face of the fixed frame thus making a watertight joint.

\[\text{(Sluices at R.L. 87.50)}\] (Fig 16)

(18) It was originally intended to have the lowest sluices in the dam at R.L. 84, but it was found that R.L. 87.50 would suit the surface levels and channels better. The head of water above cill level is 28.5 metres (60 feet 8 inches) giving a pressure of about 210 tons against the sluice. The entrance to the culvert is bell mouthed and roofed by an arched casting. A slight drop is arranged on the downstream side of the sluice cill which has been found to reduce greatly the wear and tear on the culvert bottom.
and to give a freer discharge under the sluice. A similar drop has been given to the other culverts. The grooves are built of four sections, bolted together and to the lintel and sill castings. Stanching rods are fitted to the sluice, as in those for R.L. 92 with rollers. The gate is built of special rolled steel joists framed into two cast roller paths. The skin is riveted to the joists in sections, which, when in position, are finally fixed together by turned bolts. The sluice gate is carried by a steel wire rope in two parts arranged round pulleys on the gate and on girders at the pit top. Forced grease lubrication is employed as in other sluices and gear. The crane is similar in design to those for the sluices at R.L. 96 and 100.

(19) Fig. 17 illustrates the case of double roller gates as used for under sluices of wide span. The outer gate is generally the lower one. These gates require a watertight joint between them when both are lowered. The projection of the rollers and the thickness of the middle groove flanges places them somewhat far apart. This difficulty can be overcome by projecting the top plate of the lower gate inwards, so that a narrow flat plate will cover the space, or else a plate attached to and suitably hinged to the base of the inner upper gate, so that when the lower is raised it will lift the flap, which will still keep in contact with some projecting vertical bars inserted for the purpose and thus either gate can be lowered to the floor.

Roller gates are best designed with a shoulder, or else an angle iron can project to form an abutting line for the vertical stanching rods. If necessary, stanching rods can be applied inside the groove itself at the ends of the gates.

(20) Gates are usually built up as plate girders, but sometimes rolled beams are used for the longitudinals, as in the Assuan Dam sluices. The gate consists of the outer skin and a series of longitudinal ribs which convey the horizontal water pressure to the rollers. As the pressure is greatest at the base of the gate, the ribs should be closer together near the lower end of the gate, the spacing being gradually increased so as to cause each rib to bear approximately the same horizontal pressure. The first point to be determined is the depth of the ribs, i.e., the width of the gate at the centre. This may vary from \(\frac{1}{8} \) to \(\frac{1}{16} \) of the span. Representing the distance apart of the lowest ribs as \(b \), and the head of water above the middle point between the ribs as \(h \), and the length between the piers or span as \(S \), the pressure to be supported by each rib will be \(\frac{1}{2} w (h \times S \times b) = W \) in feet tons, \(w \) being \(\frac{1}{144} \) ton, the weight of a cubic foot of water.

This pressure \(W \) is a distributed load, consequently the bending moment \(M \) will be \(\frac{WL}{8} \), \(L \) being the distance between the centre of the roller supports which is somewhat greater than \(S \).
of double T section formed of two angle irons, the upper tables of which are riveted to the skin and the lower to the web. If the skin plate on one side and the web be neglected from consideration, the sectional area of each of

the flanges will consist of that of the angle iron plus the portion of plate enclosed between them, as shown shaded in Fig. 18.

(21) The effective depth of the girder can then be considered to be not the extreme depth of the double T beam, but the distance between the centre of gravity of the angle irons or \(d\), which lines fall a little below the inner side of the top tables of the angle irons (vide Fig. 18). Tensile and compressive stress on the top and bottom flanges will be \(\frac{W L}{8d}\) tons. The safe stress on iron may be taken as 4\(\frac{1}{2}\) tons, and that on steel as 6 tons per square inch, termed \(m\). The required net sectional area of the flanges, less rivet holes, will be \(a = \frac{W L}{8dm}\). If rolled beams are used, the thickness of the web will have to be taken into consideration, and the moment of inertia about the neutral axis of the beam calculated (vide "Molesworth's Pocket Book," p. 130). Then \(R = \frac{mI}{N}\), in which \(R\) is the resistance of the beam to flexure which should equal \(\frac{W L}{5}\), \(m\) the safe compressive or tensile stress per square inch of the metal, \(I\) the moment of inertia, and \(N\) in this case \(= 2\). \(D\) being the outside depth of the section.

(22) No continuous plate is required on the inside of the gate, but vertical and inclined strips of angle or flat bar are intervals, so as to enable access to be obtained for painting the parts. The area of the skin plate, as also that of these strips reduced to the equivalent of a thinner plate over the whole surface, could be included in the sectional area of the flanges, or in the value obtained for \(I\). The webs of the ribs will naturally have to be strengthened by angle or T irons at intervals, as is usual in plate girders. In large single gates, where space is not confined, the ribs are generally composed of open lattice work with a good curvature to the centre, similar to a
bow-string gurder placed on its side. The top and bottom of the gate should be plated over.

(23) The shearing stress on the axles of the gate roller wheels, if such be adopted, will be one quarter the total water pressure on the whole gate, i.e., if two sets of rollers be used. The position of the rollers should be fixed with reference to the pressure so as to secure the upper having the same pressure as the lower roller.

The axles, if supported on both sides of the rollers, are subjected to double shear, consequently their sectional area should be \(\frac{W}{8n} \), \(W \) being the total water pressure on the whole gate = \(wh \times ld \), \(h \) being the mean head and \(ld \) the area of gate, and \(n \) the safe shearing stress of the metal, viz., 5 tons for iron and 6½ tons for cast steel.

It might be further noted that the web of the ribs is subjected to shearing stress which is greatest at the ends of the gate, where it will amount to half the total water pressure on the gate, presumably it is sufficiently supported against buckling. Its effective sectional area should equal this pressure in tons divided by \(n \) the safe shearing stress of the metal, generally assumed as the same or less than the compressive strength. The cover plates for joints in the skin should be of T section. These are not shown in the sketch in Fig. 18. The gate is not only subject to transverse thrust but to vertical bending moment due to its own weight. This is met by the disposition of the bars on the rear side, as shown in the elevation, and by the skin on the face of the gate.
INDEX

A
Absorption and evaporation canals Ch vii 7-9 in tanks Ch xii 4
Abutments thickness with counter posts Ch iv 15 18
Acre feet Ch xiii 9
Adimapah Anicut Ch vi 41
Afflux Ch ii 48 Ch ii 49
Agra Canal super passage Ch xi 39
Kushak Falls Ch ix 38
Alfred Dam Ch xi 14
Alignment of canals Ch xiii 13
Aprons of weirs Ch vi 8
Aqueducts arches and piers Ch xi 3
Arched dams See Dams
Arches Ch iv 13
Ashokan Dam Ch ii 37
Ashut Tank waste way Ch xii 32
Assut regulators Ch iv 6 Ch vii 20
Assuan Dam Ch ii 39 Ch xi 29
sluices Ch xiv 17
Automatic gates to weirs Ch xii 23

B
Baburlanka Head Ch viii 21
Backwater function Ch v 45
Balla Bulling Reservoir Ch xii 56
Bari Doab Canal weir sluices Ch vii 29
Barossa Dam Ch xi 13
Barren Jack Dam Ch 15
Base of duty Ch xiii 5
Bear Valley Dam Ch iii 9
Belubula Dam Ch iii 21
Beswada Anicut Ch vi 57
Betwa Canal head Ch viii 11 River discharge Ch xii 38
Bhatgarh Dam Ch ii 33 do Reservoir and Weir gates Ch xii 23 lift screws Ch xiv 10
Bifurcation design Ch x 9 Calgary Canal Ch \v 25
Boulder bed percolation coefficient Ch vi 9 53
Bow River minimum discharge Ch xiii 16
Bresse's factors Ch v 45
Brunel's retaining walls Ch i 29
Budki super passage Ch xi 39
Burma crib weirs Ch vi 48
intermittent irrigation Ch vii 19
Kyankse Canal Ch viii 30
Mandalay Canal weir Ch vi 51
Wingless Fall Ch ix 38
Burra Bubsa syphon Ch xi 27
Burra Weir Ch vi 31

C
Calgary Canal alignment Ch xiii 14
escape head Ch x 25
intake Ch vii 29
R C Fall Ch ix 36
timber falls Ch ix 32
map of irrigation Ch xiii 17
excavation of Ch viii 17 18
Camere Curtain Dam Ch xii 59
Canadian Pacific Railway irrigation block Ch xiii 15
Canal heads Ch viii 1
regulation bridges and escapes Ch x 13
Castel's coefficient Ch v 17 Ch vi 22
Castlewood Weir Ch ii 60
Ceylon outlet tank pipes Ch xii 54
tank sluice lift gear Ch xiv 7
Chartrain Dam Ch 1 29
Cheeseman Dam Ch i 34
Chenab River weir Ch vi 35
Canal notch falls Ch ix 2
head Ch viii 4 weir sluices Ch vii 13 syphon Ch xi 31 weir sluice roller gate Ch xiv 14
INDEX

Cherry's formula, Ch v, 27
Cull levels of canal heads, Ch viii, 2
... of weir sluices, Ch vii, 2
Clay filling in weirs Ch vii, 24, Ch vi, 49, in falls, Ch ix, 34
Closure by rotation, Ch xiii, 16
Coefficient (or percolation factors), Ch vi, 9
Cohanum Aqueduct Ch vi, 34
Colorado River weir, Ch vii, 59, Ch vii, 28
Connamur Canal siphon, Ch x, 17
Coolgardie Dam, Ch vii, 56, Ch i, 63
Crest shutters Ch vi, 65
Crib Weir Ch vi 48
Cross River Dam Ch i 36
Cushions (water) Ch ii, 23, Ch ix, 26, 31 33

D

Danietta Weir Ch vi 50
Dams, arch buttress Ch iii 16
arched principles and formulas Ch iii 1
... hydraulic fill, Ch xii, 8
... reinforced concrete, Ch iii, 20
... rock fill Ch xii 75
sand Ch vii, 3
... St Andrew's Rapids Ch vii, 58
Dunlucehampton Aqueduct, Ch vii, 55
... Canal head, Ch vii, 21
... Weir sluices, Ch vii, 7
Dead Horse Lake, Ch viii, 18
Dehn Weir, Ch vi, 46, sluices, Ch vii, 17, Canal head Ch viii, 5
Dhinkuri level crossing Ch xi, 41
Dhukwa Weir, Ch ii, 56, Ch xii, 38
Dickens' first formula, Ch v, 57
Discharge orifices Ch v, i, weirs, Ch v, 9, channels Ch v, 27, from rainfall Ch v, 52, of waste ways, Ch v, 66
Displacement and loss of weight, Ch vii, 12, of stone filling, Ch vii, 45
Duty of water canals Ch xiii, 5, Alberta Ch xiii, 15, tanks, Ch xiii, 4

E

El Dorado Canal aqueduct, Ch vi, 18, siphon, Ch xii, 19
Elsworth R C Dam Ch, iii, 31
Embarkments, Ch xii, 1

Escapes, Ch x, 13, 25
Evaporation tanks, Ch xii, 4, ditto with absorption canals, Ch xiii, 5
Excavation in Western Canada, Ch viii, 20

F

Factors for submerged weir discharges Ch v, 18
Failure of Narora Weir, Ch vi, 28
... Kathi weirs, Ch vi, 35
Tailing surface curve, Ch v, 48
Panning's formula, Ch v, 57
Floors and aprons of weirs on sand Ch iv, 19, Ch vi, 8, of canal falls Ch iv, 20, Ch ix, 19
Floors of regulators, Ch x, 4, canal heads, Ch viii, 20, weir sluices, Ch iv, 27, Ch vii 13
Folsom Weir, Ch ii, 61, head regulator, Ch vii, 27, Ch vii, 35
Foundations pressure on, Ch iv, 3, on base of arched dams, Ch iii, 5
Fteley and Stearns Ch v, 18

G

Ganges River, Narora Weir, Ch vii, 28
Gates automatic, Ch xii, 23
... hydraulic lift, Ch viii, 27
... pivoted, Ch viii, 29
... roller, Ch vii, 21, Ch viii, 24
... Ch xii, 45, Ch xiv, 14
... sliding, Ch vii, 12
Godaveri Canal escape, Ch x, 15
... River Weir, Ch vi, 55
Goulburn Weir, Ch xii, 27
Grand Barrage Cairo Ch viii, 29
Granite Reef Weir, Ch ii, 58, Ch vi, 53
Gunduk River, Ch viii, 15
Gunneram Aqueduct Ch xi, 16

II

Hartley's Polygon, Ch i, 30
Herschel's factors, Ch i, 18
Hull Reservoir for tower culvert, Ch viii, 52
Hurry reservoir valve tower, Ch vii, 32
" Hybrid " section Ch ii, 63
Hydraulic formulae Ch v
... monitor, Ch xii, 9
... fill dams Ch xii, 8
INDEX

I

Irrawaddy Canal head Ch vii 23
Inlets Ch vi 38
Intermittent flow in rivers Ch viii 19

J

Jafrabad Canal weir Ch vii 40
head Ch viii 13
fall Ch vii 25

Jeypore Sand Dam Ch viii 18
Jhelum River weir Ch viii 39
sluices Ch viii 15

Jobra Weir Ch vi 27
Jumna River (Okhla) Ch vii 45 58
Western Jumna Canal Ch viii 2

K

Kalni Nadi Aqueduct Ch vi 9
Kao syphon Ch vi 19
Keari Aqueduct Ch vi 7
Kesarapalli Aqueduct Ch vi 18
Krishna River weir Ch vii 57

Last Canal head Ch viii 1
Kushinagar Falls Ch vii 38

Kutter's formula Ch v

Kuttikal Weirs Ch viii 39

L

Laguna Weir (Colorado) Ch vi 59
Head Works Ch vii 6

Lake Lesti Ch vii 3
Lake Whiting Ch vii 25

Level crossing, Dhanauri Ch vi 41

Lahapanjung Ch vi 49

M

Madhava Weir Ch vi 18
Madhupur Weir sluices Ch vii 79
Mahanuddee River weir Ch vii 47

Mahadev Dam Ch vii 12 50
Marsheen Dam Ch vii 32
Marpina Weir Ch vii 59

Mulker Dam Ch vii 15
Mimdoka Dam Ch vii 33

Canal head Ch viii 25

Mar Madam Dam Ch vii 17

Modesto Canal Ch vii 36

Moore Colonel tables Ch vi 29
Mutlin Canals Ch vii 25

N

Nadrai Aqueduct Ch vi 9
Narora Weir drop wall Ch vii 42 46 47
Ch vii 20
sluices Ch vii 10
Canal head Ch vii 10

Necana Dam Ch vii 9
Needle closure Ch vi 52
New Croton Dam Ch vii 35

Ny regression Ch vi 27
sand percolation coefficient Ch vi 9
silt load on Ch vi 10

Nuna Canal Ch vii 25

O

Ogun Dam Ch vii 28

Oxley Falls Ch vi 1

Okhla Weir Ch vii 45 50

Okhia Weir Ch vii 18

Outlet pipes Ch vii 54

PATHFINDER Dam Ch vii 10
Pendurata Anicut Ch vi 62
Percolation factors or coefficients adopted

Ch vii 8 34
tests of floors of weirs Ch vii 30 41
tests of weir sluices Ch vii 11 21 27
tests of sand dam Ch vii 15
canal head Ch viii 4
vertical Ch vi 19

Penyara Dam Ch vii 31
Photographs of use of Ch vii 58 34
Ch viii 49
Piers Ch ix
Puddle walls Ch vii 19
INDEX

R
Raswan Regulator Ch iv 3 Ch x 7
Rear apron weirs Ch vi 16
weir sluices Ch vii 13
Regulation bridges Ch x 1
Reinforced concrete fall Ch ix 36
canal head Ch viii 25
dams Ch iii 29
objections to Ch ix 37
Remodelling of canal head works Ch viii 2
Reservoirs design of Ch xii 2
absorption and evaporation Ch xii 4
outlets Ch vii 41
disposal of surplus water Ch xii 21
disposal of silt Ch xii 55
Retaining Walls Ch i
reinforced concrete Ch 1
Revetted slopes Ch i 33
Rhinehold's automatic gates Ch vii 26
River sand percolation coefficients or
factors Ch vi 8 34
Rock fill weirs on sand principles Ch vii 42
dams Ch xii 14
Roosevelt Dam Ch xii 38 Ch xii 34
Rotation in water supply Ch viii 10
Run off of rain Ch v 52
Ryves General formula Ch v 57
S
Salt River Dam Ch xii 38 Ch xii 34
Sand classification etc Ch vi 8
dams Ch vii 18
traps Ch xii 35
Sangam Anicut Ch vi 56
Schuylerville Dam Ch iii 30
Screw lifting gates Ch vii 24 Ch x 15 Ch xii 1
Shoshone Dam Ch iii 11
Shutters See Crest Shutters
Sidelong alignment Ch xii 25 Ch viii 14
Si Jinni Canal map Ch xiii 13
needle weir Ch vi 52
Silt prevention Ch vii 4 Ch viii 2
Ch xii 55
Sirhind Canal weir sluices Ch vii 12
Skew canal heads Ch vii 17
Sohagah syphon Ch xi 33
Son Canal head Ch viii 5
inlet Ch viii 5
weir Ch vi 46
weir sluices Ch vii 17
Karn syphon Ch xi 19
Keral aqueduct Ch xi 7
Spill ways See Waste Ways
Stepped waste weir Ch xii 12
Stoney gates Ch xiv 14
Stress limiting in dams Ch x 16
Superpassages Ch xi 30 39
Sutlej River weir sluices Ch vii 12
Sweetwater Dam Ch iii 12
Syphons examples Ch x 17 Ch xi 31 33
discharge of Ch v 67 Ch vi 21
T
Tall's of weirs on sand Ch vi 26
weir sluices on sand Ch vii 13
Temmyethon Canal head Ch viii 31
Thapningang syphon Ch xi 40
Thorhala Aqueduct Ch vi 2
Trebeni Canal head Ch viii 15
syphon Ch vi 27
Turlock Canal Ch vii 37

V
Valve towers Ch xii 53
Vellore Anicut Ch vi 27
Velocity of approach orifices Ch vii 4
weirs Ch vii 13 20 40 Ch x 31
syphons Ch vi 67
Velocity surface and mean Ch vi 31
observations Ch vi 36
of water Ch vi 69
in canals Ch xiii 4

W
Waghun Tank Ch viii 6 Ch xiv 10
Wagner's formula mean velocity Ch vii 31
INDEX

Waste gates, revolving, Ch vi, 20
 " automatic, Ch vii, 25
 " ways, discharge, Ch vi, 66
 " examples, Ch xi, 39, Ch xii, 13, 32
Weir gravity on rock, Ch xi, 59
 " on boulders Ch vii, 25
 " sluices principles Ch vii, 4
 " examples, Ch vii, 7
Weirs on porous foundation, Ch xi
Western Jumma Canal head, Ch viii, 22

Wingless Falls Ch 1, 40, Ch ix, 33, in timber, Ch ix, 33

Y

Yuma irrigation, Ch vii, 28

Z

Zawgyi Canal head, Ch viii, 30
Zifta Barrage, Ch vii, 20
Zuni Dam, Ch xii, 13